VERSAILLES	TP Lois électriques / Programmation ARDUINO		Spé Sl 206 21
Noms : Prénoms : Classe : Date :	lote : /20	/20	

1. Compétences abordées :

- Utiliser les lois électriques pour résoudre un problème
- Utiliser des appareils de mesure en toute sécurité
- Comprendre un programme informatique
- Comparer, traiter, organiser et synthétiser les informations pertinentes

2. Critères d'évaluation et barème

Loi d'Ohm (Q1, Q2, Q3, Q4, Q5, Q6, Q7)	/6
Associations de résistances (Q8)	/3
Pont diviseur de tension (Q9, Q10, Q11)	/3
Montage 1 diode (Q12)	/2
Montage 3 diodes (Q13)	/2
Montage bouton poussoir (Q14)	/2
Prototype (accéléromètre, température, distance) (Q15, Q16, Q17, Q18)	

3. Documents à utiliser

Sur le site web : http://lycee-ferry-versailles.fr/spe-si/

Chapitre 3 / signaux électriques / Lois électriques Chapitre 5 / Arduino / Cours

4. Règles de sécurité

TOUS LES MONTAGES DOIVENT ÊTRE RÉALISÉS HORS TENSION ET VÉRIFIÉS PAR LE PROFESSEUR AVANT LA MISE SOUS TENSION

- Q1 : Déterminer l'expression de la tension UR en fonction des tensions UA et UL.
- Q2 : Calculer la tension UR sachant que la tension UL est de 2,1 V lorsque la Led est alimentée.
- <u>Q3</u> : Indiquer quel appareil de mesure et comment vous devez le brancher pour mesurer la tension UR aux bornes de la résistance. L'ajouter sur le schéma électrique.
- Q4 : Déterminer la valeur de la résistance R pour un courant IF de 15 mA.
- Q5 : Parmi les résistances mises à votre disposition, choisir celle dont la valeur est immédiatement supérieure
- **<u>Q6</u>** : Expliquer à quoi signifient, couleur par couleur, les anneaux colorés peints sur la résistance.
- <u>Q7</u>: Utiliser un ohmmètre pour vérifier la valeur de la résistance : faire le schéma du branchement <u>Préciser si le</u> <u>montage doit être sous tension ou non</u>, noter la valeur lue, exprimer l'écart relatif.

6. Association de résistances

<u>Q7 : Défi</u> : Vous disposez de résistances de 100, 220, 510 et 1 000Ω</u>

Comment devez-vous les brancher (faire un schéma) pour obtenir une résistance équivalente de :

- 1 730Ω
- 50Ω
- 475Ω

7. Pont diviseur de tension

Le diviseur de tension est un montage très classique. Il permet, à partir d'une tension de référence, par exemple 5V, de construire une tension moins élevée, par exemple 3,3V. Il trouvera naturellement sa place lorsqu'il s'agit de connecter une carte Arduino délivrant du 5V à un module ou un composant fonctionnant en 3,3V.

Sur le schéma suivant, la tension d'entrée U est divisée selon R_1 et R_2 et donne la tension de sortie U_2

<u>**Q9**</u>: Exprimer U₂ en fonction de U, R₁ et R₂ <u>**Q10**</u>: Sachant que U est à 5V, quelle est la valeur de U₂ lorsque R₁=510 Ω et R₂=220 Ω . Faire le montage pour vérifier l'exactitude de votre réponse.

Spé SI	TP Lois électriques / Programmation - ARDUINO	ТР

Q11 : Pour que U₂ soit U/5, comment doivent être la valeur de R₁ par rapport à celle de R₂. Faire un montage permettant de le vérifier. Expliquer votre démarche.

Faire clignoter la diode branchée sur la sortie 13 8. Réaliser le montage suivant. Attention à bien respecter le sens de branchement de la diode +La valeur de la résistance est de 220Ω . CATHO Arduine Uno (Rev3) 2200 Blue Ø ላለለለ INO fritzing Attendre 1 seconde int pinLed=13; Attendre 1 seconde void setup() { 2 Définir la variable pinMode(pinLed,OUTPUT); 3 Initialiser la variable comme une sortie } Allumer la diode Initialisation void loop() { < 4</pre> digitalWrite (pinLed, HIGH); 5 Eteindre la diode delay(1000); 🤇 6 Faire en boucle digitalWrite (pinLed, LOW) ; 7 delay(1000); < 8

Q12 : Associer les différentes parties du programme à leur fonction Tester le programme, soit :

- En utilisant l'IDE Arduino en double cliquant sur : 🚧, puis en téléversant le programme sur la carte
- En lançant la simulation sur le site Tinkercad : https://www.tinkercad.com/

9. Ex.3: Faire un chenillard de diodes

Réaliser le montage suivant :

10. Faire s'allumer les diodes lorsque l'on appuie sur un bouton

Réaliser le montage suivant : (ONL Attention au sens de montage du bouton poussoir et au sens de montage des diodes. Side 1 Two connected pins Pushbutton Connects two sides when pressed Side 2 Two connected pins eachwithict.com В A Connexion intérieure Le bouton fourni a 4 connecteurs, mais seulement 2 sont utilisés. 2 sont interconnectés С D

Une fois le programme analysé, recopiez-le sur Arduino et testez-le.

Vous pouvez maintenant changer le motif d'allumage des diodes et/ou en ajouter.

TP Lois électriques / Programmation - ARDUINO

Q14 : Associer les différentes parties du programme à leur fonction

11. Brancher les composants sur la carte

Le prototype étudié contient :

- Une led (et sa résistance de 220Ω)
- Un bouton poussoir et sa résistance de pull up (1 000Ω)
- Un capteur de distance SEN0042
- Un capteur de température TMP36
- Un accéléromètre ADXL345

Page 7 sur 8

TP Lois électriques / Programmation - ARDUINO

Documentations techniques :

TMP36 :

Spé SI

These sensors use a solid-state technique to determine the temperature. That is to say, they don't use mercury (like old thermometers), bimetalic strips (like in some home thermometers or stoves), nor do they use thermistors (temperature sensitive resistors). Instead, they use the fact as temperature increases, the voltage across a diode increases at a known rate. (Technically, this is actually the voltage drop between the base and emitter - the Vbe - of a transistor.) By precisely amplifying the voltage change, it is easy to generate an analog signal that is directly proportional to temperature (0-5V). There have been some improvements on the technique but, essentially that is how temperature is measured.

To convert the voltage to temperature, simply use the formula: Temp in $^{\circ}C = [(Vout in mV) - 500]/10$

Triple Axis Accelerometer Breakout - ADXL345

This new version adds 2 standoff holes as well as an extra decoupling capacitor. The ADXL345 is a small, thin, low power, 3-axis MEMS accelerometer with high resolution (13-bit) measurement at up to +-16 g. Digital output data is formatted as 16-bit twos complement and is accessible through I2C digital interface (SDA, SCL).

The ADXL345 is well suited to measures the static acceleration of gravity in tilt-sensing applications, as well as dynamic acceleration resulting from motion or shock. Its high resolution (4 mg/LSB) enables measurement of inclination changes less than 1.0 degrees;

Simplest wiring : VCC, GND, SCL and SDA

SEN0042

This is an edge detection sensor from DFRobot. It will help your robot detect the edge of a precipice, preventing it from falling off a table or down the stairs to it's certain demise! This IR distance sensor is connected to an arduino digital pin.

Specification Supply Voltage: 2.7~6.2v Current: < 10mA Range distance: 2~10cm (Low), <2cm or >10cm (High) Interface:1 digital pin Signal Voltage: Vcc-0.6V(High), 0.6V(Low)

<u>Q15</u> : La diode doit-elle être reliée à une entrée ou à une sortie sur la carte Arduino ? Justifiez votre réponse. Cette entrée ou sortie doit-elle être analogique ou numérique ?

<u>Q16</u> : Le bouton poussoir doit-il être relié à une entrée ou à une sortie sur la carte Arduino ? Justifiez votre réponse. Cette entrée ou sortie doit-elle être analogique ou numérique ?

<u>Q17</u> : Pour chaque capteur donner le type et les caractéristiques du signal fourni

<u>Q18</u> : Proposer un câblage pour le montage :

TP

TP Lois électriques / Programmation - ARDUINO

Spé SI

TP