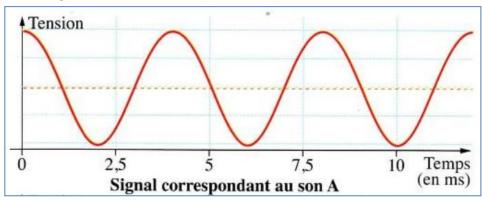


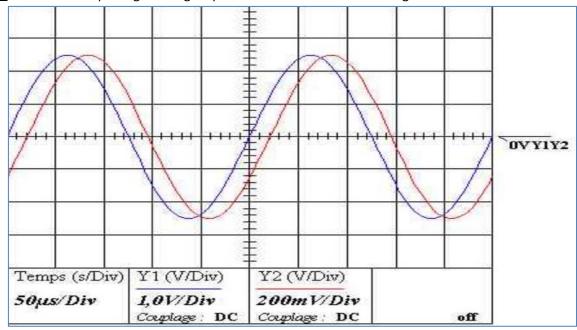
Caractérisation des signaux


1. Numération

- 1. Convertir 0011 1011₍₂₎ en base 10
- 2. Convertir 37₍₁₀₎ en base 2 :
- 3. Convertir 47₍₁₀₎ et 235₍₁₀₎ en binaire, et en hexadécimal.
- 4. Convertir 1100 1101₍₂₎ et 10 1001₍₂₎ en décimal et en hexadécimal.
- 5. Convertir A1A₍₁₆₎ et 789₍₁₆₎ en décimal et en binaire.

2. Période et fréquence

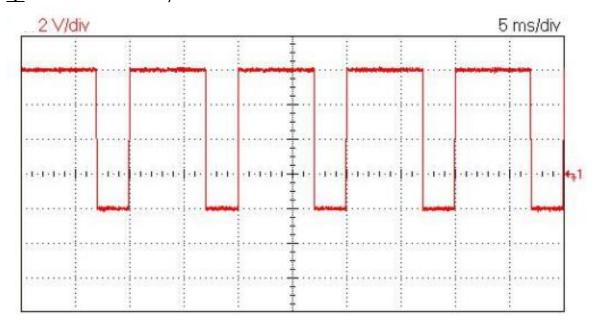
- Q1: Indiquer sur le schéma ci-dessous la période du signal
- Q2: Calculer la fréquence du signal


Q3: Calculer la tension moyenne puis la tension efficace sachant que la sensibilité verticale est de 3V/division.

3. Déphasage de signaux périodiques

Q1: Déterminer la période et la fréquence des signaux

Q2 : Calculer le déphasage en degrés puis en radians entre les deux signaux



Caractérisation des signaux

4. Rapport cyclique

- Q1: Indiquer sur le schéma le temps au niveau haut et la période du signal
- Q2: Calculer la valeur du rapport cyclique
- **Q3**: Calculer la tension moyenne

5. Chronogramme d'un signal

Soit un signal rectangulaire ayant les caractéristiques suivantes :

Fréquence : F= 500Hz, rapport cyclique = 40%, U_{max} = 10V, U_{min} = -2V.

- **Q1** Représenter le signal sous la forme d'un chronogramme.
- **Q2**. Calculer la durée de la période.
- Q3. Calculer la durée de l'état haut T_H.
- Q4. Calculer la valeur moyenne du signal.

6. Convertisseur analogique numérique

Un convertisseur analogique / numérique permet de convertir une tension comprise entre 0 et 5V en un nombre codé en binaire sur 10 bits.

- a) Calculer le quantum du convertisseur
- b) Calculer la tension d'entrée correspondant au nombre 317
- c) Donner le nombre correspondant à une tension de 2.22V