



| Noms :<br>Prénoms :<br>Classe : |        |     |  |
|---------------------------------|--------|-----|--|
|                                 |        |     |  |
|                                 | Note : | /20 |  |



## Critères d'évaluation et barème

| <b><u>Q1</u></b> : Détermination de R                                                            | /1 |
|--------------------------------------------------------------------------------------------------|----|
| Q2 : Détermination de L                                                                          | /1 |
| Q3 : Détermination de K                                                                          | /3 |
| <b><u>Q4</u></b> : Détermination de f                                                            | /2 |
| $\underline{\mathbf{Q5}}$ : Détermination de C <sub>0</sub>                                      | /1 |
| <u>Q6</u> : Détermination de J                                                                   | /1 |
| <b>Q7</b> : Validation du modèle Matlab du moteur                                                | /1 |
| <b>Q8</b> : Détermination du rapport de réduction du réducteur                                   | /1 |
| <b>Q9</b> : Détermination du puissance électrique absorbée                                       | /1 |
| <b><u>Q10</u></b> : Détermination de la puissance de sortie, du rendement et du couple de sortie | /3 |
| <b>Q11</b> : Validation du modèle Matlab                                                         | /2 |
| <b>Q12</b> : Compléter le modèle Matlab                                                          | /2 |
| <b>Q13</b> : Détermination de la durée de recharge                                               | /1 |

### Analyse des écarts







### 1- Présentation générale de Matlab



Matlab est un logiciel multiphysique. Cela signifie qu'il peut traiter simultanément des grandeurs électriques, mécaniques, thermiques, ....

Vous allez être amenés à l'utiliser en projet pour modéliser le système que vous avez à étudier.



Calcul numérique

Utilisez les fonctions mathématiques pour résoudre des problèmes scientifiques et d'ingénierie

» En savoir plus



Analyse et visualisation des données Explorez, modélisez et

visualisez des données » En savoir plus

Regarder la vidéo 3:26

| * 🔝 🛃 🚱      | Q Find +      | veaspones     | *       | Ter |
|--------------|---------------|---------------|---------|-----|
| EDIT         | NAVIGATE      | BREAKPOINTS   |         |     |
| TLAB         |               |               |         |     |
| 📝 Editor - C | (Documents)MA | TLAS\sudoku_s | olver.m | )   |
| sudoku_sol   | ver.m ×       |               |         |     |
| 5 - Gwb      | ile onefound  |               |         |     |
| 6 -          | splits = ze:  | ros(1000);    |         |     |
|              |               | <b>0</b> *    |         |     |
| 7 -          | oneround =    |               |         |     |

Programmation et développement d'algorithmes

Créez et optimisez des algorithmes à l'aide d'un langage de haut niveau et d'outils de développement.

| Select         | Solar Da     | ta Files |  |
|----------------|--------------|----------|--|
| HJ Push Button | No Files Aug | fable e  |  |
| m Sider        |              |          |  |
| Radio Button   |              |          |  |
| Check Box      |              |          |  |
| 🕫 Edit Test    |              |          |  |
| Static Text    |              |          |  |
| ID Pop-up Menu |              |          |  |
| Filiather      |              |          |  |

#### Développement et déploiement d'applications

Développez et partagez des applications sous la forme de code, de fichiers exécutables ou de composants logiciels.

Dans ce TP, vous allez apprendre comment paramétrer :

- un moteur à courant continu,
- un réducteur à engrenages,
- une batterie,
- un chargeur de batterie.

### 2- Présentation du robot Rovio

Rovio est une webcam mobile Wifi qui vous permettra de voir et d'interagir avec son environnement via un flux de lecture vidéo et audio diffusé en continu où que ce soit ! Contrôle à distance facile 24h/24 7j/7 depuis partout dans le monde ! Fonctionne avec n'importe quel appareil connecté à Internet : PC, Mac, téléphone portable, Smartphone, PDA et même les consoles de jeu vidéo.

Le système de navigation TrueTrackMD vous permet de sauvegarder des points de parcours







en utilisant l'interface Rovio. En un seul clic, Rovio se rend automatiquement jusqu'au point choisi. Grâce à ses phares LED intégrés, Rovio vous aide à le guider dans les endroits peu éclairés ; vous saurez tout ce qui se passe à la maison ou au bureau. La fonction auto-recharge vous permet de faire revenir Rovio à sa base de recharge en un seul clic depuis votre navigateur Internet !









## 3- Paramétrage d'un moteur à courant continu

Télécharger les fichiers sur votre espace de travail. Ouvrir Matlab Ouvrir le fichier : « rovio.mdl » Double cliquer sur le moteur



Les paramètres à déterminer par expérimentation sont les suivants :

La résistance interne R (en Ohm) L'inductance L (en Henry) La constante de couple k (en Nm/A) L'inertie de l'axe moteur J (en kg.m<sup>2</sup>) Les frottements visqueux f (en Nms) Le couple de frottement sec  $C_0$  (en Nm)

| Block Parameters: DC Machine                                                                                                                                                                                                                               | 23 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| DC machine (mask) (link)                                                                                                                                                                                                                                   | -  |
| Implements a (wound-field or permanent magnet) DC machine.<br>For the wound-field DC machine, access is provided to the field<br>connections so that the machine can be used as a separately<br>excited, shunt-connected or a series-connected DC machine. |    |
| Configuration Parameters Advanced                                                                                                                                                                                                                          |    |
| Armature resistance and inductance [Ra (ohms) La (H) ]                                                                                                                                                                                                     |    |
| [ 0.6 0.012]                                                                                                                                                                                                                                               |    |
| Specify: Torque constant (N.m/A)                                                                                                                                                                                                                           | 1  |
| Torque constant (N.m/A)                                                                                                                                                                                                                                    | =  |
| 18                                                                                                                                                                                                                                                         |    |
| Total inertia J (kg.m^2)                                                                                                                                                                                                                                   |    |
| 1                                                                                                                                                                                                                                                          |    |
| Viscous friction coefficient Bm (N.m.s)                                                                                                                                                                                                                    |    |
| 0                                                                                                                                                                                                                                                          |    |
| Coulomb friction torque Tf (N.m)                                                                                                                                                                                                                           |    |
| 0                                                                                                                                                                                                                                                          |    |
| Initial speed (rad/s) :                                                                                                                                                                                                                                    |    |
| 1                                                                                                                                                                                                                                                          | -  |
| OK Cancel Help Appl                                                                                                                                                                                                                                        | y  |







## a) Détermination de la résistance interne R (en Ohm)

 $E = K_e \times \omega$  donc lorsque l'on bloque le rotor (l'axe du moteur) on a  $\omega$ =0 et donc E=0

Nous avons fait le montage suivant et obtenons sur l'écran de l'oscilloscope les courbes suivantes :



Au moment de la fermeture de l'interrupteur, la tension aux bornes du moteur varie brutalement. Par contre, le courant i varie progressivement.

 $\frac{di(t)}{dt} = 0$ 

A la fin de la phase transitoire, i est constant donc



## b) Détermination de l'inductance L (en Henry)

 $\tau = \frac{L}{R}$   $\tau$  est appelé « constante de temps », elle s'exprime en secondes. Elle correspond au temps mis par le système pour atteindre 63% de sa valeur finale.

**<u>Q2</u>** : Lire la valeur de  $\tau$  et calculer la valeur de L

### c) Détermination de la constante de couple K (en Nm/A)

Par hypothèse, nous allons considérer que le moteur est bien compensé et donc que  $K_E$  $(\frac{V}{rad/s})$  est le même que  $K_I(\frac{N.m}{A})$ 

| Rappel : $E = K_E \times \Omega_{MOT}$ et $C_{EM} = K_I \times I_{ABS}$ |
|-------------------------------------------------------------------------|
|-------------------------------------------------------------------------|

Nous avons réalisé les mesures suivantes en régime permanent (à vitesse constante) :

| Essai | U <sub>moteur</sub><br>(V) | I <sub>abs</sub><br>(A) | N <sub>rotor</sub><br>(tour/min) | E<br>(V) | ω <sub>mot</sub><br>(rad/s) | C <sub>em</sub><br>(N.m) |
|-------|----------------------------|-------------------------|----------------------------------|----------|-----------------------------|--------------------------|
| n°1   | 4                          | 0,125                   | 11 100                           |          |                             | 0,400.10 <sup>-3</sup>   |
| n°2   | 5                          | 0,137                   | 13 900                           |          |                             | 0,440.10-3               |

Q3 : Compléter le tableau précédent, en déterminant, pour chaque essai :

- la force électromotrice E du moteur,
- la vitesse de rotation  $\omega_{\text{mot}}$  (rad/s) du moteur
- la valeur de K<sub>e</sub>  $(\frac{V}{rad/s})$





## d) <u>Détermination du coefficient de frottements visqueux f</u> (en <u>Nm/(rad/s))</u>

| Le principe fondamental de la dynamique est :                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{l} C_{em}(t) - C_r(t) = J \times \frac{d\omega}{dt} \\ Avec: \\ C_{em}  \text{couple électromagnétique fourni par le moteur ;} \\ C_r  \text{couple résistant exercé par la partie mécanique sur l'arbre moteur ;} \\ J  \text{inertie du système (en kg.m2) ;} \\ \frac{d\omega}{dt}  \text{expression d'une variation de vitesse.} \end{array}$ | L'équation du couple résistant est de la forme :<br>$C_r(t) = f \times \omega(t) + C_o$<br>Avec :<br>$C_r$ couple résistant exercé par la partie<br>mécanique sur l'arbre moteur ;<br>f coefficient de frottements visqueux ;<br>$\omega$ vitesse de rotation du moteur (en rad/s) ;<br>$C_0$ frottement sec ; |

**<u>Q4</u>** : En utilisant les valeurs du tableau précédent, déterminer la valeur de f **Remarque** : en régime statique (à vitesse stabilisée),  $\frac{d\omega}{dt} = 0$ 

e) Détermination du couple de frottements secs C<sub>0</sub> (en Nm)

<u>Q5</u> : Utiliser les équations et mesures précédentes pour déterminer C<sub>o</sub>.

## f) <u>Détermination de l'inertie J</u> (en kg.m<sup>2</sup>)

Lors de cet essai on stabilise le moteur à la vitesse de 11 100tr/min et on mesure :

- i que l'on note  $i_0$ , on peut donc connaître le couple moteur  $C_{em} = K_i \times i_0$
- **N** (tour/min), on peut donc connaître  $\omega_o$  (rad/s)
- On considère que les frottements secs sont dominants (**f négligeable**)  $Cr = Co + \frac{f \times \omega_{\Pi}}{f} = constante (quel que soit \omega)$

A l'instant t = 0, on coupe l'alimentation du moteur et on relève à l'oscilloscope l'allure de la décroissance de la f.e.m. aux bornes de moteur.



Sachant que la fem est l'image de la vitesse à une constante près (E = Ke ×  $\omega$ ), il vient :

 $C_{em}(t) - C_r(t) = J \times \frac{d\omega}{dt}$ 

(Principe Fondamental de la dynamique)

**A**,  $t = 0^-$ , juste avant de couper l'alimentation on a :  $C_{em} - C_r = 0 \text{ donc } C_{em} = C_r = K_i \times i_0$  **A**,  $t = 0^+$ , juste après avoir coupé l'alimentation on a :  $C_{em} = 0 \text{ donc } 0 - C_r = J \times \frac{d\omega}{dt}$ 

**Donc pour** t > 0, on a  $-K_i \times i_0 = J \times \frac{d\omega}{dt}$ 

 $\Omega$ Pente (-Cr/J)  $d\Omega$   $d\Omega$  dt t

<u>Q6</u> : Calculer J en considérant comme intervalle de temps la durée écoulée entre l'instant où l'on coupe l'alimentation du moteur et celui où la roue est à l'arrêt.





<u>Q7</u> : Mettre à jour les paramètres sur la maquette Matlab. Lancer la simulation pour les deux valeurs de  $U_{mot}$  des essais 1 et 2.

Les résultats trouvés sont-ils conformes à ce que vous attendiez ? Justifier.

### 4- Paramétrage d'un réducteur à engrenages

#### a) Calcul du rapport de réduction

**<u>Q8</u>** : Utiliser les informations données au début du TP pour calculer le rapport de réduction.

#### b) Evaluation du rendement

Pour calculer le rendement de l'ensemble (moteur+ réducteur) il faut la puissance d'entrée (puissance électrique :  $P=U \times I$ ) et la puissance de sortie (puissance mécanique de translation :  $P = F \times v$ ).

Télécharger et lire la vidéo «*Charge 400g Rovio.avi*»: La masse soulevée lors de l'essai est de 400g. Le diamètre de la poulie est de 6 cm.

**Q9**: Quelle est la puissance absorbée par le moteur lors de cet essai. Justifier clairement votre réponse (sur l'alimentation stabilisée, le courant est affiché à droite et la tension à gauche).

**Détermination de la vitesse moyenne lors de l'essai**  $V_{charge}$  (*m/s*)



Ouvrir le logiciel Latis-pro

Dans « Edition » choisir « Analyse de séquences vidéos », puis cliquer sur « Fichiers » et ouvrir la vidéo « charge 400g rovio.avi » que vous avez téléchargée dans votre répertoire k\ :

Mettre la vidéo au début 题

« Sélection de l'origine », sur le point rouge (aidez-vous de la loupe en bas à droite).

« Sélection de l'étalon ». on choisi la hauteur de l'alimentation stabilisée (11.5 cm).

« Sélection manuelle des points » Vous prendrez environ une dizaine

de points. Pour avancer cliquer sur L



Origine





Faire apparaître la « liste des courbes »



Vous disposez des courbes des mouvements (positions) du poids en fonction du temps.

Le vecteur vitesse instantanée  $\vec{v}$  d'un objet dont la position en fonction du temps t est donnée par  $\vec{r}(t)$  est défini par la dérivée :  $\vec{v} = \frac{d\vec{r}}{dt}$ 

La vitesse linéaire du poids, est donc égale à la dérivé de la position de chaque point, suivant l'axe y, en fonction du temps.

Choisir « traitement », « calculs spécifiques » et « dérivée ».

Glisser coller « mouvement de Y1 » dans la case « courbe puis « calcul ».

Afin de rendre « plus propre » vos courbes, il faut les lisser.

Choisir « traitement », « calculs spécifiques » et « lissage ».

Glisser / coller « dérivée de mouvement de Y1 » dans la case « courbe », faire un lissage <u>fort</u> puis « calcul ».

Afin de visualiser vos courbes, glisser / coller vos courbes dans la fenêtre n°1.

La vitesse n'est pas uniforme, il faut calculer la vitesse moyenne.

Dans « outil », « mesures automatiques », glisser coller la courbe de vitesse lissée, puis récupérer la valeur moyenne.

On peut affiner les résultats en supprimant les valeurs extrêmes de votre courbe. Pour ceci il



sélectionner « traitement », « tableur », puis supprimer les points extrêmes (ils s'effacent de la courbent et changent la valeur moyenne).

**Q10** : Calculer la puissance de sortie, puis le rendement. Connaissant le diamètre de la poulie, calculer le couple disponible sur l'axe de sortie du réducteur.





#### Mise en œuvre de la maquette Matlab

#### Méthode 1 :

Sous Matlab, ouvrir votre fichier « rovio.mdl »

Modifier le couple résistant « TL : Torque Load » de votre modèle afin que le moteur absorbe le même courant que lors de l'essai fourni en vidéo. (Attention, mettre la bonne tension d'alimentation du moteur)

Relever la vitesse de rotation du moteur électrique donnée par la simulation lorsque le moteur est dans la même condition que l'essai. A l'aide du couple moteur et de sa vitesse, calculer P<sub>moteur</sub>.

#### <u> Méthode 2 :</u>

Connaissant le courant absorbé et le coefficient ki de votre moteur, calculer la valeur du couple moteur pour cet essai.

A l'aide la vitesse linéaire trouvée sous Latis pro et du diamètre de la poulie, calculer la vitesse angulaire du moteur. Connaissant le rapport de réduction du rovio, en déduire la vitesse angulaire du moteur. Calculer la puissance P<sub>moteur</sub> en sortie moteur.

#### Q11 : Comparer les résultats trouvés avec les deux méthodes







### 5- Paramétrage d'une batterie



Le cahier des charges indique :

- Batterie NIMH 6 V 3000 mAh,
- Autonomie : 1h30.

Rappel : Energie = U x Q

Résultats de mesures sur le système :

| Système sous tensi<br>activés : (Marche a | <b>on, moteurs</b><br>vant) |
|-------------------------------------------|-----------------------------|
| $U_{tot} = 6.62 V$                        | <b>D</b> 7/1 W              |
| $I_{tot} = 1.15 \text{ A}$                | $P_{tot} = 7.01 W$          |
|                                           | • •                         |

Paramétrer la batterie en modifiant les paramètres :

#### **<u>Q12</u>** : Vérifier l'autonomie du système en finissant le modèle Matlab. Conclure.



| Rattery (mad                                  | (link)                                                                                    |                                                            |                   |
|-----------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------|
| Implements a<br>"Use paramet<br>discharge cha | generic battery that model most po<br>ers based on Battery type and nom<br>iracteristics. | opular battery types. Unche<br>inal values" parameter to e | ck the<br>dit the |
| Parameters                                    | View Discharge Characteristics                                                            | Battery Dynamics                                           |                   |
| Battery type                                  | Nickel-Metal-Hydride                                                                      |                                                            | -                 |
| Nominal Volta                                 | qe (V)                                                                                    |                                                            |                   |
| 1.2                                           |                                                                                           |                                                            |                   |
| Rated Capacit                                 | y (Ah)                                                                                    |                                                            |                   |
| 6.5                                           |                                                                                           |                                                            |                   |
| Initial State-O                               | f-Charge (%)                                                                              |                                                            |                   |
| 100                                           |                                                                                           |                                                            |                   |
| 7                                             |                                                                                           |                                                            |                   |
| Fully Charged                                 | Voltage (V)                                                                               |                                                            |                   |
| 1.4136                                        |                                                                                           |                                                            |                   |
| Nominal Disch                                 | arge Current (A)                                                                          |                                                            |                   |
| 1.3                                           |                                                                                           |                                                            |                   |
| Internal Resist                               | ance (Ohms)                                                                               |                                                            |                   |
| 0.0018462                                     |                                                                                           |                                                            |                   |
| Capacity (Ah)                                 | Nominal Voltage                                                                           |                                                            |                   |
| 6.25                                          |                                                                                           |                                                            |                   |
| Exponential zo                                | ne [Voltage (V), Capacity (Ah)]                                                           |                                                            |                   |
|                                               | 1.01                                                                                      |                                                            |                   |
| [1.3017                                       | 1.5]                                                                                      |                                                            |                   |





## 6- Paramétrage d'un chargeur



**Q13** : Modifier la « tension max » et le « courant de charge ». Quelle est la durée de la recharge de la batterie ?