TRANSMISSION DE PUISSANCE DES SYSTEMES MOTORISES : SYNTHESE

Approche fonctionnelle, structurelle, comportementale et technologique des principales solutions constructives de transmission de puissance mécanique de rotation

- P ð Watt
- C ð Newton-mètre
- d, R, p et c ð mètre
- θ en radian

 $\bullet \ \alpha, \ \beta, \ \delta \ \eth \ degr\acute{e}$

• V en mètre par seconde • ω Õ radian par seconde Loi E/S Critères de choix Modèle Modèle cinématique Loi E/S cinématique Modèle **P**: Positions (avantage/ NF E 04-113 dynamique/énergétique dynamique/ structurel V: Vitesses inconvénient) pas p courroie Plate et Trapezale Poulies/courroie plate trapezoïdale, crantée Põ200 kW (poly-V) **P**: $r = \theta_2/\theta_1 = d_1/d_2$ $C=(T-t) \cdot D/2$ \mathbf{V} : $\mathbf{r} = \omega_2/\omega_1 = d_1/d_2$ Précision et puissance T=t . $e^{f.\theta/sin(\beta/2)}$ courroie plate: β=180° courroie crantée : Trapezoïdale courroie trap^{ale}: 26°< β <42° tan α = (d₂-d₁)/ 2 a $r = \theta_2/\theta_1 = d_1/d_2 = Z_1/Z_2$ $V: r = \omega_2/\omega_1 = d_1/d_2 = Z_1/Z_2$ Brin mou Pð200 kW (chaîne simple) Roues et chaîne Précision(-) $P: r=\theta_2/\theta_1 \approx d_1/d_2 \approx Z_1/Z_2$ T = C / R ω_1 Bruit(-) $V: r=\omega_2/\omega_1\approx d_1/d_2\approx Z_1/Z_2$ $d_i = p/\sin(\pi/Z_i)$ $T = C.p / (2.\sin(\pi/Z))$ ransmission pseudonomocinétique (effet polygonal - ou "de corde")) Puissance(+) Engrenages cylindriques droits $F_T=C/r$ P: $r = \theta_2/\theta_1 = d_1/d_2 = Z_1/Z_2$ Précision(+) Rendement(+) $F_R=F_T.tan \alpha$ Bruit(+) ω_2 $V: r = \omega_2/\omega_1 = d_1/d_2 = Z_1/Z_2$ <u>2</u> ω₁ C: Couple sur la roue F_T: Effort tangentiel F_R: Effort Radial Engrenages cylindriques droits Idem P: $r = \theta_2/\theta_1 = -d_1/d_2 = -Z_1/Z_2$ $F_T=C/r$ Sens de rotation extérieurs inversé $F_R=F_T$.tan α $V: r = \omega_2/\omega_1 = -d_1/d_2 = -Z_1/Z_2$ C: Couple sur la roue F_T: Effort tangentiel F_R: Effort Radial ω_2 Põ10kW/kg $d=m_t.Z$ Engrenages r ð 1/12 en pratique $m_n=m_t.\cos\beta$ \eth $p_n=p_t.\cos\beta$ BB **P**: $r=\theta_2/\theta_1=-d_1/d_2=-Z_1/Z_2$ cylindriques $tan \alpha_n=tan \alpha_t \cdot cos \beta$ $m_n : module réel (taillage)$ η < hélicoidaux $V: r = \omega_2/\omega_1 = -d_1/d_2 = -Z_1/Z_2$ F_T=C/r $F_R=F_T.tan \alpha_n /cos\beta$ $F_A=F_T.tan \beta$ ω_2 C: Couple sur la roue F_{T} : Effort tangentiel F_{R} : Effort Radial F_{A} : Effort Axial $F_{T2}=C_2/R_2$ Engrenages coniques Pð10kW/kg $P: r=\theta_2/\theta_1=d_1/d_2=Z_1/Z_2$ $F_{A2}=F_{T2}.tan\alpha_n.sin\delta=F_{R1}$ r ð 1/12 en pratique $F_{R2}=F_{T2}.tan\alpha_n.cos\delta=F_{A1}$ $V: r = \omega_2/\omega_1 = d_1/d_2 = Z_1/Z_2$ (attention à d₁ et d₂.) Pð10kW/kg Efforts sur : P: $r=\theta_2/\theta_1=Z_{vis}/Z_{roue}$ Engrenages
oue et vis sans rð 1/120 Vis V: $r=\omega_2/\omega_1=Z_{vis}/Z_{roue}$ faible encombrement. $F_{TV} = C_V / r_V = F_{AR}$ Réversible si $\pi/2-\phi<\beta<\phi$ $F_{AV} = F_{TV} / \tan \beta = F_{TR}$ Zvis: nombre de filets $F_{RV} = F_{TV}$. tan $\alpha_n / \sin \beta = F_{RF}$ Efforts résultrant : $F = F_R / \sin \alpha_n$ f = 0.05, $\alpha_n = 20^\circ$ 10 15 2C 25 30 35 40 Réducteur à Pð10kW/kg $r=\omega_2/\omega_1=(-1)^p Z_{menantes}$ rð 1/1200 réversible Même loi que précédemment à ω_1 appliquer par solide isolé $r=(-1)^3x(Z_1/Z_E)$ $X(Z_E/Z_2)X(Z_3/Z_4)$ Transformateur de P: $c = \theta R$ mouvement $F_T=C/r$ c: course réversible $F_R = F_T \cdot \tan \alpha$ $V: V = \omega R$ C: Couple sur la roue F_T: Effort tangentiel F_R: Effort Radial Transformateur de Couple moteur sur la vis et effort axial résistant sur l'écrou Effort axial moteur sur l'écrou et couple résistant sur la vis Système : angle de filet R angle d'hélice : pas apparent P: $c = \theta p/2 \pi$ mouvement c: course V: $V = \omega p/2 \pi$ $\begin{array}{l} \tan\,\phi \,=f\,/\cos\,\alpha \\ f \,=\, \text{coefficient de frottement} \end{array}$ $tan \phi = f/cos \alpha$ f = coefficient de frottement α = angle de filet α = angle de filet Le système vis-écrou est dit réversible si les deux types de transformation de mouvement ci-dessus sont possibles : $\phi < \beta < \pi/2$ - ϕ