

# Puissance et rendements Portail SET



DM

### Mise en situation :

Le portail SET permet d'ouvrir et de fermer un passage à l'aide d'une télécommande.

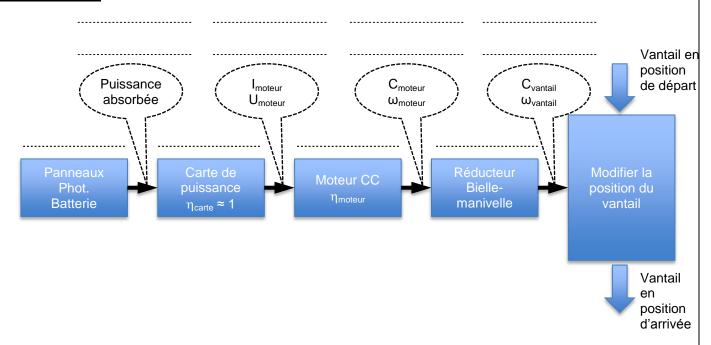
Le panneau solaire associé à une batterie le rend autonome en énergie.

## 2. Problématique :

On souhaite évaluer les performances énergétiques du portail SET. Pour cela, on va mesurer les puissances en entrée et en sortie afin de déterminer le rendement de la chaîne d'énergie.



### 3. Mesures:


On a pris les mesures suivantes pour la position du vantail « presque ouvert » :

| I <sub>moteur</sub> = 1,2 A | U <sub>moteur</sub> = 12 V |
|-----------------------------|----------------------------|
| Bras de levier d = 0,59 m   | F <sub>bielle</sub> = 22 N |

Position du bras: 8

## 4. Modélisation du problème :

### Chaîne d'énergie :



- Q1. Compléter la chaîne d'énergie ci-dessus en indiquant les noms des blocs ainsi que le type d'énergie qui circule entre les blocs.
- Q2. Exprimer la puissance  $P_{vantail}$  en fonction de la puissance absorbée  $P_{absorbée}$ , et des rendements  $\eta_{carte}$ ,  $\eta_{moteur}$  et  $\eta_{transmission}$ .

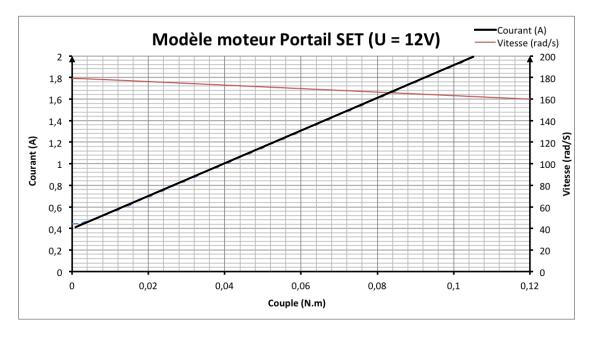
## 5. Calcul du rendement du moteur :

- Q3. Calculer la puissance absorbée par le moteur P<sub>absorbée</sub>.
- Q4. A partir de la simulation du moteur (dossier technique), relever le couple moteur C<sub>moteur</sub> correspondant à I<sub>moteur</sub>.
- Q5. A partir de la simulation du moteur (dossier technique), relever la vitesse de rotation du moteur  $\omega_{moteur}$  correspondant à  $C_{moteur}$ .
- Q6. Calculer la puissance mécanique du moteur P<sub>moteur</sub>.
- Q7. Calculer le rendement du moteur  $\eta_{moteur}$ .

| S si | Puissance et rendements - Portail SET | DM |
|------|---------------------------------------|----|

# 6. Calcul du rendement de la transmission :

- Q8. A partir du dossier technique, monter que le rapport de réduction  $r=\frac{1}{1085}$ .
- Q9. Calculer la vitesse de rotation du bras  $\underline{\mathbf{1}}$   $\omega_{bras}$ .
- Q10. A partir du graphe « Rapport  $\omega_{vantail}$  /  $\omega_{bras}$  en fonction de la position du bras » (dossier technique), relever le rapport  $\omega_{vantail}$  /  $\omega_{bras}$  pour la position du bras correspondant à la mesure.
- Q11. En déduire  $\omega_{vantail}$ .
- Q12. Montrer que le couple résistant sur le vantail C<sub>vantail</sub> à pour valeur 13 N.m.
- Q13. En déduire la puissance au vantail  $P_{vantail}$ .
- Q14. En déduire le rendement de la transmission  $\eta_{transmission}$ .

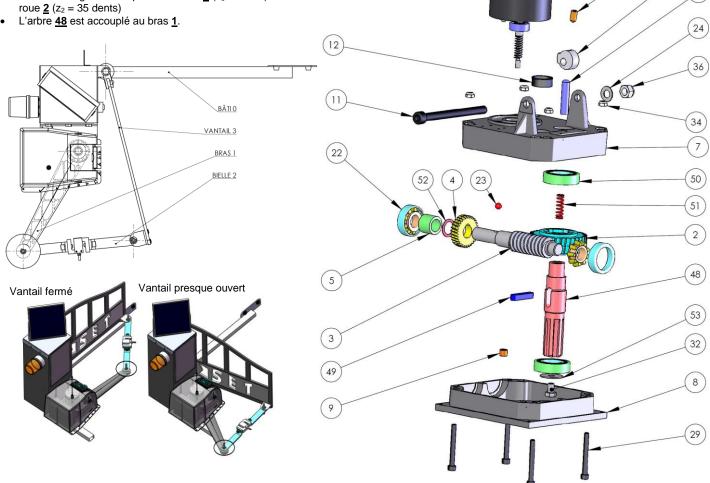

## 7. Calcul du rendement global de la chaîne d'énergie :

Quels que soient les résultats précédents, on donne :

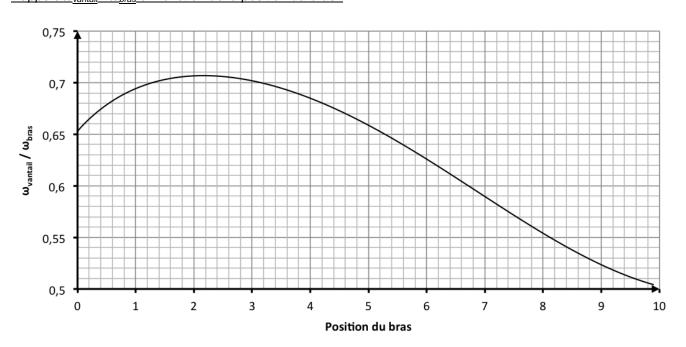
- $\eta_{\text{moteur}} = 0.65$
- $\eta_{\text{transmission}} = 0,12$
- Q15. Calculer  $\eta_{global}$ .
- Q16. Conclure sur les performances énergétiques du portail (en relation avec le mode de fonctionnement autonome par panneau solaire).

# 8. Dossier technique:

Résultats de la simulation du moteur du portail :




**MOTOREDUCTEUR** 


#### Partie mécanique :

Le moteur électrique est accouplé à un réducteur à roues et vis sans fin à 2 étages (voir éclaté ci-contre)

- Le 1er étage est composé de la vis moteur  $\underline{1}$  ( $z_1 = 1$  filet) et de la roue  $\underline{4}$  ( $z_4 = 31$  dents)
- Le 2ème étage est composé de la vis  $\underline{\mathbf{3}}$  ( $z_3 = 1$  filet) et de la



# Rapport $\omega_{vantail}/\omega_{bras}$ en fonction de la position du bras :



33

(10

13