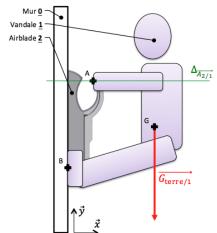


Résistance des matériaux

Sèche-mains Dyson Airblade

TD

1. Mise en situation

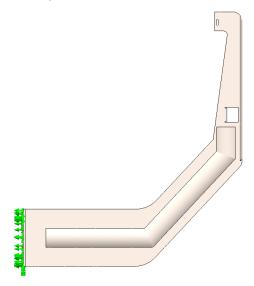

Lors du développement du sèche-mains Airblade, la société Dyson a été attentive à la résistance au vandalisme.

La structure de résistance de l'Airblade est organisée autour des équerres (en rouge cicontre) qui supportent la majorité des efforts lors d'une traction sur le bec séchant.

2. Analyse des contraintes dans les équerres

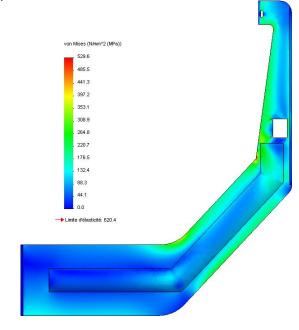
Objectif de l'étude : Analyser la résistance des équerres.

On modélise l'acte de vandalisme avec le schéma ci-contre :



Hypothèses:

- On suppose que le problème est plan (\vec{x}, \vec{y}) .
- On considère que l'acte de vandalisme amène le vandale à être immobile dans la position ci-contre.
- Le vandale (1) est soumis à son poids $\overrightarrow{G_{terre/1}}$ en son centre de gravité G. La norme de son poids est de 1000 N.
- On suppose que l'action des 2 équerres de l'Airblade (2) sur le vandale (1) $\overrightarrow{A_{2/1}}$ est de direction horizontale (\vec{x}) .
 - On suppose que l'action en B regroupe les actions sur des 2 pieds.


L'étude statique menée par le bureau d'études a permis de déterminer l'effort du vandale (1) sur une équerre de l'Airblade (2) : $\|\overrightarrow{A_{1/2}}\| = 500 \text{ N}$.

Q1 : Tracer, sur le dessin ci-dessous, l'effort appliqué sur une équerre.

Q2 : Nommer le type de sollicitation auquel 'équerre est soumis ?

Q3: L'utilisation d'un logiciel d'éléments finis permet de visualiser l'intensité des contraintes dans la pièce étudiée. Entourer, sur l'image ci-dessous la zone dans laquelle les contraintes sont maximales.

Q4 : Proposer, à main levée, une modification de la forme de l'équerre afin de réduire cette contrainte