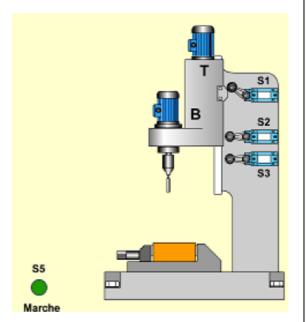


Comportement Séquentiel et Algorithmie GRAFCET



1. Perceuse automatique:

1.1. Cahier des charges :

- 1. Une unité d'usinage prévue pour percer des pièces est équipée de la manière suivante:
- Un moteur asynchrone "B" assure la rotation du foret. Le couplage du moteur est assuré par KM1.
- Un moteur asynchrone "T" assure la translation du chariot. Ce moteur est à deux sens de rotation et à deux vitesses.
 - Le couplage descente est assuré par KM2.
 - Le couplage montée est assuré par KM3.
 - o Le couplage **petite vitesse** est assuré par **KM4**.
 - Le couplage grande vitesse est assuré par KM5.
- Trois fins de course électromécaniques assurent les contrôles des positions :

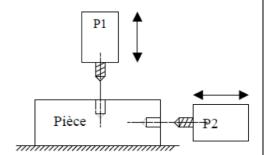
S1: limite hauteS2: limite moyenneS3: limite basse.

1.2. Fonctionnement:

- 1. Le chariot, en position initiale est en limite haute, comme représenté sur le dessin ci-dessus.
- 2. Un appui sur S5 provoque la rotation du foret et la descente du chariot en grande vitesse.
- 3. L'arrivée sur S2, qui coïncide avec le début du perçage, entraîne le passage en petite vitesse tout en conservant les mouvements précédents.
- 4. L'arrivée en S3, qui coïncide avec la fin du perçage provoque la remontée du chariot en grande vitesse, foret toujours tournant.

1.3. Travail demandé :

Q1. Réaliser le GRAFCET de ce système.


2. Perçage simultané:

Deux perceuses effectuent chacune un perçage sur une même pièce simultanément comme le montre la figure ci contre.

Les 2 perçages n'ont pas la même durée.

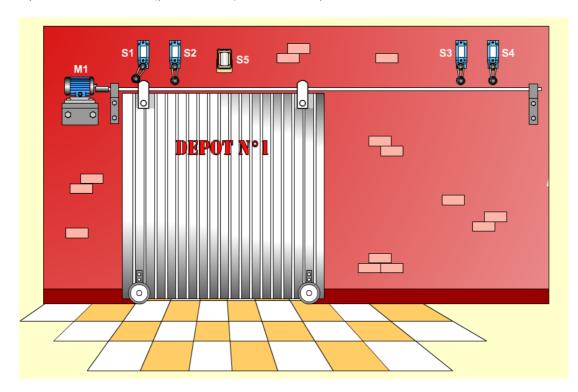
Afin d'éviter que cette opération ne prenne trop de temps, on décide de faire marcher les 2 perceuses en même temps.

La commande de mise en marche s'effectue grâce à un bouton poussoir.

Entrées	Sorties
Départ cycle : S1	Rotation perceuse 1 : KM1
Capteur de fin de course haut : S2	Rotation perceuse 2 : KM2
Capteur de fin de course bas : S3	Avancer perceuse 1 : Y1+
Capteur de fin de course gauche : S4	Reculer perceuse 1 : Y1-
Capteur de fin de course droite : S5	Avancer perceuse 2 : Y2+
	Reculer perceuse 2 : Y2-

Q2. Réaliser le GRAFCET de ce système.

Site: 4-5 Programmation Page 1 sur 2


C -:	Cémpatial et Algorithmaio CRASCET	70
3 31	Séquentiel et Algorithmie - GRAFCET	Iυ

3. Porte de garage:

3.1. Fonctionnement:

La porte coulissante métallique d'un atelier de réparation mécanique est motorisée au moyen d'un moteur asynchrone. Son fonctionnement doit répondre aux prescriptions suivantes :

- La porte, fermée au départ, s'ouvre si une personne se présente sur le tapis.
- En fin d'ouverture, la porte reste ouverte durant 15 secondes
- la porte se referme alors automatiquement au bout des 15 secondes si personne ne se trouve sur le tapis
- Afin d'éviter un arrêt brutal de la porte (ce qui entraînerait des contraintes mécaniques importantes pour l'installation), son déplacement sera ralenti (petite vitesse) à la fin de chaque translation.

3.2. Affectation des entrés et des sorties. Cahier des charges

Entrées:

S1 : Porte fermée

S2 : Début de fermeture lente

S3: Début d'ouverture lente

S4 : Porte ouverte

S5 : Présence personne

SORTIES:

M: Moteur à deux vitesses et à deux sens de rotation

commandé par les 4 contacteurs suivants:

KM1: Ouverture

KM2: Fermeture

KM3 : Grande vitesse

KM4: Petite vitesse

3.3. Travail demandé :

Q3. Réaliser le GRAFCET de ce système.

Site: 4-5 Programmation Page 2 sur 2