Diagrammes d'états/transitions Programmation sur Cible ARDUINO Portail DRAGONSiS siTP	1
Noms: Prénoms: Classe: Date: Note: /20	
Nous nous intéresserons plus particulièrement à l'écart entre le système réel et le système simulé. Système simulé. Système Domaine de la simulation Performances simulées	Écart 2
2. Critères d'évaluation et barème : Autonomie, quantité et qualité du travail, soin	/3

Etude du modèle physique	/5
Modélisation du mode manuel	/5
Programmation du portail réel	/5
Modélisation du mode automatique	/2

3. Matériel nécessaire :

- Système Portail Dragon du laboratoire
- Logiciel MATLAB + Simulink

4. Problème technique :

Le portail dragon est un équipement domestique permettant d'ouvrir et de fermer un passage.

Afin de réduire les coûts, le constructeur désire changer le microcontrôleur existant par un ATMEL Atmega2560.

En phase de prototypage, le portail a été équipé de la carte de prototypage Arduino MEGA 2560 qui dispose du microcontrôleur Atmega2560.

Les objectifs de ce TP sont :

- Réaliser l'algorithme de programmation en graphe d'états / transition
- Simuler l'algorithme avec Simulink et Stateflow (Matlab)
- Implanter le graphe d'état compilé dans la carte de prototypage Arduino MEGA 2560 afin de tester réellement l'algorithme.

S si

5. Entrées/Sorties du diagramme :

<u>Remarque</u>: Un capteur analogique (potentiomètre vis) de position angulaire a été placé sur la vis du réducteur. Ce capteur permet de déterminer la position du portail

Variable	Description	Etat 0	Etat 1	Analogique
ARU	Arrêt d'urgence	Relâché	Enfoncé	
bp_ouvrir	Bouton poussoir ouvrir	Relâché	Enfoncé	
bp_fermer	Bouton poussoir fermer	Relâché	Enfoncé	
br_auto	Bouton rotatif manu/auto	Manuel	Auto	
fdc_ferme	Fin de course fermé	Non fermé	Fermé	
nos vis	Detentiomètrovic			0 : portail fermé
pos_vis	Potentiometre vis			1000 : portail ouvert
courant_max	Détection courant maximum	Courant normal	Courant maxi dépassé	
				0 : arrêt
v_mot	Vitesse moteur			100 : vitesse lente
				255 : vitesse max
s_mot	Sens moteur	Ouvrir	Fermer	
H1	Voyant rouge	Voyant allumé	Voyant éteint	
H2	Voyant orange	Voyant allumé	Voyant éteint	
Н3	Voyant vert	Voyant allumé	Voyant éteint	

6. Etude du modèle physique :

- Télécharger le fichier « Modele_portail.zip » et le décompresser dans le dossier téléchargement.
- Démarrer MATLAB , et « Modele_portail/1_SIMU » :
- se placer dans le dossier

• Double-cliquer le fichier « PORTAIL_DRAGON_ELEVE_VXX.slx »

6.1. Modélisation de la carte de puissance :

S si	Diagrammes d'états/transitions - Portail DRAGON	TP
La carte de puissance des ordres de la cha moteur et son sens de	e MD03 permet de distribuer l'énergie électrique en fonction îne d'information. Elle permet de faire varier la vitesse du e rotation.	
Elle est pilotée par la numérique v_mot de • Lorsque les 8 • Lorsque les 8	a sortie MLI D8 de l'Arduino proportionnellement à un mot 8 bits : 8 bits sont à 0, la tension de sortie de la carte est de 0V. 8 bits sont à 1, la tension de sortie de la carte est de 12V.	BIL
On considère que la v de sortie de la carte,	vitesse de rotation du moteur est proportionnelle à la tension et que pour une tension de 12V, ω_{mot} = 200 rd/s.	
Enfin, on considère q	ue si le moteur tourne dans le sens positif, le portail s'ouvre.	
Q1. <u>Donner la vale</u>	ur décimale du mot numérique v_mot correspondant à une tension de soi	rtie de 0V et de 12V.
Q2. Exprimer alors	$\underline{\omega}_{mot}$ en fonction de v_mot.	
Q3. <u>Reprendre sur</u> <u>l'ordre du sens</u>	feuille de copie le code ci-dessous afin de modéliser la carte de puissan de rotation du moteur s mot (voir tableau page 2) :	<u>ce en tenant compte de</u>
if s_mot == 0		
w_mot =	;	
w mot =		

end

- Double-cliquer sur le bloc « Portail » puis sur le bloc « Commande moteur ».
- Modifier le code d'après la question 3 et sauvegarder le bloc.

6.2. Modélisation capteur de courant :

	Pressure +
	Town Theorem
Zone d'étude	
8 1941	

Afin de détecter le blocage du portail par un obstacle, un capteur de courant a été installé sur l'alimentation de la carte de puissance du moteur. Il renvoie une tension analogique de sortie proportionnelle au courant mesuré.

On considère qu'un blocage correspond à un courant dépassant 4A.

On donne l'équation caractéristique du capteur : V_{courant} = 0.136*I+2.5, avec :

- V_{courant} : tension analogique de sortie du capteur en V •
- I : courant mesuré en A (gamme entre -18A et 18A) •

Q4. Sur feuille de copie, tracer le graphique $V_{courant} = f(I)$.

S si	Diagrammes d'états/tra	nsitions - Portail DRAGON	TP
Q5. <u>Donner la vale</u>	ur de V _{courant} pour les valeurs extrêmes	s de I, ainsi que pour I = 0A.	
Le capteur de couran • 10 bits • Pleine échell	t est branché sur un convertisseur ana e : 5V	alogique / numérique de la carte Arduino) :
Q6. <u>Montrer que le</u>	mot numérique décimal de sortie du C	CAN N _{courant} = 27.82*I+511.5	
Q7. <u>Calculer alors</u>	N _{courant} pour un courant correspondant	t à un blocage du portail <u>.</u>	
Q8. <u>Reprendre sur</u> page 2).	feuille de copie le code ci-dessous a	fin de modéliser le seuil de courant ma	<u>ximum (voir tableau</u>
if N_courant > courant_max = else courant_max = end • Double-clique • Modifier le co	; ; er sur le bloc « Courant max ». ode d'après la question 8 et sauvegarc	tr N_courant_max fcn Courant Max	
7. Rappels ST	TATEFLOW :	Goldin max	
	Algorithme	Syntaxe STATEFLO	N
Vérifier que la varial	ole v est égale à 1	[v==1]	
Vérifier que la varial	ole v est supérieure ou égale à 1	[v>=1]	
Vérifier que la varial	ole v est supérieure à 1	[v <mark>></mark> 1]	
Vérifier que la varial	ole v est inférieure ou égale à 1	[v<=1]	
Vérifier que la varial	ole v est inférieure à 1	[v < 1]	
Vérifier que l'état A	est actif	[in(A)]	
La transition est vali sont vérifiées	dée si la condition1 ET la condition2	[Condition1 & Condition	n2]>
La transition est vali sont vérifiées	dée si la condition1 OU la condition2	[Condition1 Condition:	$2] \rightarrow$
Dans l'état On, Les <mark>(A ET B)</mark>	états A et B s'activent en parallèle	On A B	
Dans l'átat On Les	átats A et B s'activent en de facon	On •	

Dans l'état On, Les états A et B s'activent en **de façon** exclusive (A OU B) en fonction des transitions. Par défaut le premier état à s'activer est l'état A.

В

А

Diagrammes d'états/transitions - Portail DRAGON

TP

8. Modélisation du mode « Manuel » :

Num Tona Parasi Standing + 1	1					na • Setter
BPO:Velue	1	10.10*	1		And The name	
Surface .	See Constant					Date
BPT Value	•			1	Pattern	UD4
diamon .	NNU	F	Street Street		Power	
APU YANA	1	- FI-			0	
Balleri			हा हा हा हा ही ही			
	CarCanet WCOUCcess		A PARTY AND A PARTY		(mage 1	
Con Courset Value	br_auto Value	Zone d'étude		Service of		
*** ***	Å			1	Ver	
ND - () - 1	10 Jana			the second		
4 URX	œ		0er			

8.1. Cahier des charges :

En mode manuel, le portail :

- Attend l'ordre d'ouverture ou de fermeture du portail (bouton poussoir ouvrir ou fermer)
- S'ouvre si la position de la vis est inférieure à 1000
- Se ferme si le contact fin de course fermé n'est pas activé
- Lors de l'ouverture : passe en vitesse lente lorsque la position de la vis est supérieure à 800
- Lors de la fermeture : passe en vitesse lente lorsque la position de la vis est inférieure à 100

En phase d'ouverture ou de fermeture, un appui sur le bouton poussoir ouvrir ou fermer provoque l'arrêt du portail Seul le voyant vert est allumé.

S	si

TP

8.2. <u>Diagramme d'état :</u>

Le comportement des variables est décrit sur le tableau de la page 2.

- Q9. Proposer sur feuille de copie un diagramme répondant au cahier des charges du mode manuel.
- Q10. <u>Implémenter votre solution, effectuer une simulation (temps infini) et compléter sur feuille de copie la check-list</u> <u>ci-dessous :</u>

	Critères	Validé	Non validé
Phase d'autortura	Lors de l'appui sur le bouton ouvrir, le portail s'ouvre en vitesse rapide		
<u>Filase d ouverture</u>	Le portail passe en vitesse lente lorsque la position de la vis dépasse 800		
Phase de	Lors de l'appui sur le bouton fermer, le portail se ferme en vitesse rapide		
<u>fermeture</u>	Le portail passe en vitesse lente lorsque la position de la vis passe en dessous de 100		
En phase de mouver	nent, un appui sur l'un des boutons poussoir provoque l'arrêt du portail		
Le voyant vert est all	umé		

9. Modélisation des modes « Sécurité » et « Initialisation » :

S si	Diagrammes d'états/transitions - Portail DRAGON	TP

9.1. Cahier des charges :

9.1.1. Mode initialisation :

A l'allumage du portail, le portail entre dans le mode initialisation, qui ferme le portail en vitesse lente jusqu'à la détection du contact fin de course fermé.

Le voyant orange est allumé.

Le système entre ensuite dans le mode sélectionné (auto ou manuel).

9.1.2. Mode sécurité :

Afin de garantir la sécurité des utilisateurs, le constructeur décide de réaliser une détection de surintensité, qui permet de détecter le blocage du portail par un obstacle.

Le système est par ailleurs équipé d'un bouton « coup de poing » d'arrêt d'urgence, dont l'activation a le même effet que la détection de surintensité.

Dans ces deux cas, le portail se met en mode « sécurité », le moteur est arrêté et le voyant rouge est allumé. Un appui sur le bouton ouvrir ou fermer déclenchera le mode initialisation.

9.2. Diagramme d'état :

- Q11. Proposer sur feuille de copie un diagramme répondant au cahier des charges des modes initialisation et sécurité.
- Q12. <u>Implémenter votre solution, effectuer une simulation (temps infini) et compléter sur feuille de copie la check-list</u> <u>ci-dessous :</u>

	Critères	Validé	Non validé
	Le bouton arrêt d'urgence déclenche le mode sécurité		
	Une surintensité déclenche le mode sécurité		
Mode securite	Un appui sur l'un des boutons poussoir provoque le passage en mode initialisation		
	Le voyant rouge est allumé		
Mada initialization	Le portail se ferme en vitesse lente		
Mode millansation	Le voyant orange est allumé		

10. Programmation du portail réel :

10.1. Préliminaires :

On se propose à présent de tester le diagramme d'état de commande sur le système réel.

Pour cela, nous allons compiler le diagramme et l'exécuter sur la cible Arduino du portail (fonction de Simulink).

- Sous Stateflow, presser les touches « CTRL + A » afin de sélectionner tous les éléments du diagramme.
- Puis presser « CTRL + C » pour copier :
- Se placer dans le dossier
 « Modele_portail/2_ARDUINO_EXTERNAL » :

<u> </u>	si Diagrammes d'états/transitions - Portail DRAGON	TP
• Re « I	nommer le fichier le fichier « PORTAIL_DRAGON_ARDUINO_ELEVE_VXX.slx OM1_NOM2 » en entête	» en y rajoutar
• Do	uble-cliquer le fichier « NOM1_NOM2_PORTAIL_DRAGON_ARDUINO_ELEVE_VXX. (rir le diagramme Stateflow et coller (CTRL + V) les éléments précédemment conjés	six »
• Sa	ivegarder et copier le fichier dans l'emplacement indiqué par votre professeur.	
10 2 E	<u>écution du programme sur cible (sur le PC connecté au Portail</u>) •
Rappel : le	modèle à exécuter en mode « External » doit être stocké sur un dossier local (pas de c	lossier réseau).
<u>Rappel :</u> Ια • Οι	modèle à exécuter en mode « External » doit être stocké sur un dossier local (pas de c /rir le fichier « NOM1_NOM2_PORTAIL_DRAGON_ARDUINO_ELEVE_VXX.slx »	lossier réseau).

- Lancer le modèle et <u>patienter 1 min</u> afin que le programme se compile et tourne sur la carte Arduino :
- Q13. <u>Vérifier le bon fonctionnement du portail réel en reprenant les check-lists précédemment réalisées (ajouter une colonne « Réel »).</u>

Running the model on 'Arduino Mega 2560'..

11. Modélisation du mode « Automatique » :

11.1. Cahier des charges :

Le mode automatique reprend le **fonctionnement de base du mode manuel**. Lorsque la phase d'ouverture est terminée, le système patiente 15 secondes avant de lancer le cycle de fermeture.

11.2. Diagramme d'état :

Q14. Proposer sur feuille de copie un diagramme répondant au cahier des charges du mode automatique.