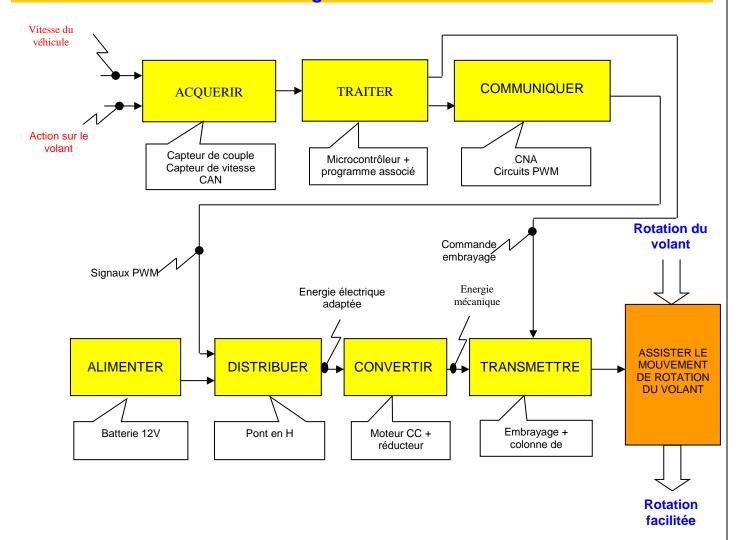


Fonctions et Modélisation Direction Assistée Electrique

TD

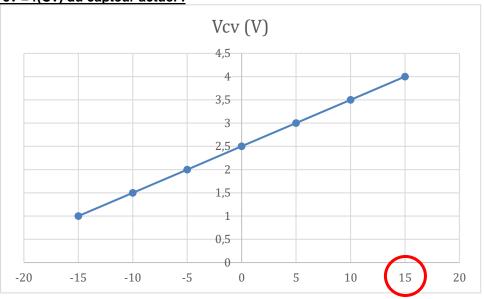
1. Problématique :


La direction assistée électrique permet de faciliter la rotation du volant sur un véhicule automobile :

Le capteur de couple actuel est spécifique à la DAE. En vue d'une éventuelle évolution du système, on désire étudier la possibilité d'utiliser un capteur de couple <u>standard</u> au niveau de la colonne de direction.

2. Chaine d'information et d'énergie :

Site: 4-3 Conditionnement des signaux


Page 1 sur 3

S si	Fonctions et Modélisation - DAE	TD

3. Etude des capteurs :

Le couple nominal correspond au couple maximal mesurable pour lequel le capteur a été conçu.

Caractéristique Vcv = f(Cv) du capteur actuel :

Le **couple nominal** du capteur actuel est environ de **15 N.m**, nous prendrons donc pour le nouveau capteur un **couple nominal** de **20 N.m**.

Couplemètres rotatifs - rotating torque sensor

O Axe claveté des deux côtés - both shaft ends with keyway

Type DR2

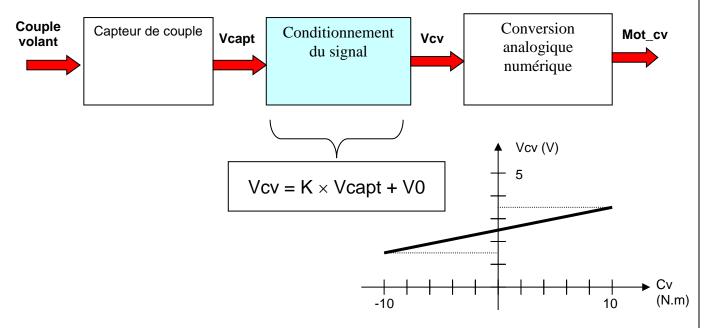
Couple Nominal (C.N.) Nominal torque [Nm]	Sensibilité sensitivity [mV/V]	Vitesse max.* ¹ max speed [tr/min]	Raideur springrate [Nm/rad]	Charge latérale max. max. lateral load [N]	Moment d'inertie moment of inertia Côté entrainant drive side J en [kg m²]	Poids <i>weigh</i> [kg]
1	0,5	2000	600	4	0,8x10 ⁻⁸	0,16
2	0,5	2000	700	5	0,8x10 ⁻⁸	0,16
5	2,00	2000	800	7	0,9x10 ⁻⁸	0,16
10	2,00	2000	800	7,5	1x10 ⁻⁸	0,16
20	2,00	1500	1,5x10 ³	12	1x10 ⁻⁷	0,35
50	2,00	1500	3,8x10 ³	28	1x10 ⁻⁷	0,38
100	2,00	1500	5x10 ³	65	1,4x10 ⁻⁷	0,42
200	2,00	1000	2x10⁴	80	1,5x10 ⁻⁵	0,90
500	2,00	1000	5x10⁴	200	1,5x10 ⁻⁵	0,90

Site: 4-3 Conditionnement des signaux

S si	Fonctions et Modélisation - DAE	TD
------	---------------------------------	----

4. Conditionnement du nouveau capteur :

On cherche à vérifier la possibilité d'adapter au système un nouveau type de capteur de couple.


Le nouveau capteur fourni une tension qui peut s'exprimer de la manière suivante :

$$V_{CAPT} = \frac{Tension \ d'alimentation \ capteur \ \times \ Sensibilit\'{e} \ \times \ Couple \ volant}{Couple \ Nominal}$$

Avec:

- Tension d'alimentation en Volts
- Sensibilité en Volts/Volts
- Couple volant en N.m
- Q1. Avec une tension d'alimentation de 12V, calculer les valeurs de V_{CAPT} pour les valeurs suivantes du couple volant :
 - Position de repos : C_V = 0 N.m
 - $C_V = 10 \text{ N.m}$
 - $C_V = -10 \text{ N.m}$

La tension issue du capteur doit être conditionnée afin que le convertisseur analogique numérique « voit » toujours la même tension Vcv pour un couple donné :

Q2. Tracer l'allure de la fonction $V_{CAPT} = f(Cv)$ sur le système d'axe ci-dessus puis déterminer les constantes K et VO à partir des deux graphiques afin de permettre le remplacement de l'ancien capteur par le nouveau.