

Pilotage du moteur à courant continu du robot Rovio

Mise en situation

Comment piloter les roues du robot Rovio ?

Cahier des charges

Le cahier des charges est le suivant :

- Le traitement des informations doit se faire par un microcontrôleur (TRAITER),
- Les roues devront pouvoir être pilotées dans les deux sens et à vitesse variable (DISTRIBUER),
- L'actionneur est un moteur à courant continu (CONVERTIR).

Commande d'un moteur à courant continu

Voir cours

Choix des composants

Choix du microprocesseur :

Tout microprocesseur peut-être utilisé dans notre application. Pour des raisons de programmation rapide et graphique, notre choix se portera sur un microcontrôleur de chez microchip. Nous utiliserons un 16F88. Il possède 5 ports 2 ports programmables en sortie, soit 16 sorties.

Ce microprocesseur est programmable via le logiciel flowcode.

Choix du distributeur

Le pilotage d'un moteur à courant continu à partir d'un microcontroleur se fait par l'intermédiaire d'une interface de puissance, il doit pouvoir inverser le sens de rotation des roues.

L'interface de puissance le plus adapté est donc un pont en H piloté par trois entrées dont voici la table de vérité :

ENable	IN1	IN2	Etat moteur
0	Х	Х	Arrêt
1	1	0	Sens 1
1	0	1	Sens 2

S SI	Pilotage d'un moteur à courant continu	TP 2h

Assemblage de l'ensemble

Il faut alors relier 3 sorties du microcontrôleur aux 3 entrées de commande de ce pont en H (EN, IN1 et IN2)

- La sortie RCO est reliée de manière arbitraire à EN(able)
- Les sorties RC1 et RC2, sont deux sortie PWM (Pulse Wild Modulation), elles seront donc reliées à IN1 et IN2, afin de permettre la commande dans les deux sens à vitesse variable.
- Une alimentation extérieure est nécessaire car le moteur à courant continu nécessite beaucoup de puissance.

Les sorties à largeur d'impulsion, sont les sorties RC1 et RC2 du microcontrôleur :

- Relier la sortie RCO à l'entrée Enable de l'interface de puissance
- Relier la sortie RC1(Sortie MLI 1) à l'entrée IN1 de l'interface de puissance
- Relier la sortie RC2 (Sortie MLI 2) à l'entrée IN2 de l'interface de puissance.

Brancher la carte d'interface sur le port C,

L'alimentation de la carte d'interface, doit être reliée à l'alimentation extérieure (12V/0V) car le moteur à courant continu nécessite beaucoup de courant.

Brancher le moteur à courant continu à la carte de puissance.

S SI	Pilotage d'un moteur à courant continu	TP 2h
Pilotage d'un mot	eur à courant continu	
Pour piloter un mote Il se trouve dans l'o c'est cet interface de	eur à courant continu sous Flowcode, on utilise l'outil PWM (Pulse Width Monglet « Mechatronics ». Il permet de générer les signaux pour piloter l'inte puissance qui fournit l'énergie électrique au moteur à courant continu.	dulation) Pun . erface de puissance.
Q1. A l'aide de la not	tice de Flowocode, realiser le programme suivant puis lancer la simulation 🖆	
Objects 👻 🥊 Com	mon - Macro:	
4 Principal	PWM(0) Enable LEDarray(0) Disable SetDutyCycle ChangePeriod SetDutyCycle10bit SetDutyCycle10bit	
DÉBUT Sortie -> C0 Appel o	Mise à 1 de l'entrée Enable (Validation) Ha Routine Campo Paramètres : nIdx(OCTE Valider la sortie PWM1 Valeur Retour :	Variables
Enable(1)	Pouti	Variables
PWM(0) SetDutyC	Propriétés : Routine Composant Nom Affiché : Appel de la Routine Composant	nnuler
FIN	Composant : Macro : PWM(0) LED array(0) Enable Disable SetDutyCycle ChangePeriod SetDutyCycle10bit	
	Paramètres : nldx(OCTET), nDuty(OCTET)	
	Choix du rapport cyclique 1, 250 Sur la sortie PW1 Valeur Ret our	ibles
	Varia	ibles
	? OK A	nnuler
Q2. Télécharger	le programme dans le pic et le tester. Commenter les résultats de la simula	tion.

Q3. Réaliser un programme qui permet de faire tourner le moteur à 75% de sa vitesse dans le sens 1 si on n'appuie pas sur l'interrupteur A0 et à 50% de sa vitesse dans le sens 2 si on appuie sur A0. Vous utiliserez l'outil de décision

Penser à insérer votre programme dans une boucle infinie afin de répéter le programme 싂