VERSAILLES	<u>Robot I</u>	r <u>ovio</u>	S-SI
	Stockage de	e l'énergie	TP
Noms : Prénoms : Classe : Date :	Note : /20		

Problématique :

On veut répondre à la question suivante : « L'autonomie du robot Rovio lui permet-elle d'assurer sa fonction de surveillance dans l'ensemble de la maison ? »

Critères d'évaluation et barème :

Autonomie et quantité de travail	/3
Modéliser le comportement de la batterie du robot Rovio	/3
Comparaison avec le modèle Matlab	/4
Calcul de l'autonomie pratique	/5
Comparaison avec le modèle Matlab	/5

Analyse des écarts

Robot rovio – stockage de l'énergie

TP

1. Mise en situation

Rovio est une **webcam sans fil mobile** qui vous permet de voir, d'entendre mais aussi de parler depuis n'importe quel point du globe, comme si vous étiez dans la pièce.

Les **roues holonomiques** de Rovio, disposées à 120°, lui permettent de se déplacer dans absolument toutes les directions sans avoir à faire de manœuvres compliquées et lui confèrent une démarche surprenante et futuriste.

La **caméra** est montée sur une tête articulée qui permet d'avoir une vue au ras du sol, légèrement surélevée ou au plafond.

Doté d'une **base de chargement**, Rovio est capable de retourner se charger seul quelque soit l'endroit où il se situe dans la maison.

2. Cahier des charges du robot Rovio

Alimentation électrique :

- Batterie NIMH 6 V 3000 mAh,
- Autonomie : 1h30.

3. Modélisation du comportement de la batterie

Q1 : Pour modéliser la charge aux bornes de la batterie, nous allons utiliser une résistance variable. Sur le robot Rovio, à quoi correspond cette charge ? Comment pouvez-vous la faire varier ?

Q2 : Recopier le schéma ci-dessous avec la lettre A (pour ampèremètre) et V (pour voltmètre).

Q3 : Indiquez votre démarche pour obtenir la courbe U=f(I).

A partir du site des SSI, télécharger le fichier « Ubat_rovio_elv.xls ». Les mesures ont été effectuées par votre enseignant avant la séance de TP.

Q4 : Ouvrir le fichier sous Excel et analyser la courbe obtenue Ubat_modele_pratique = f(Ibat) du <u>tableau 1</u>. À l'aide de votre cours, en déduire la valeur de la résistance interne R_{int}. Compléter le modèle pratique sur votre document réponse.

-	

4. Comparaison avec le modèle Matlab

Matlab est un logiciel qui permet de créer des modèles mathématiques capables de simuler le comportement de phénomènes physiques.

A partir du site des SSI, télécharger le répertoire « modele_rovio_batt_elv »

La bibliothèque Matlab possède des blocs, appelés « battery », qui simulent le comportement des accumulateurs.

Présentation du modèle Matlab :

S si	Robot Rovio – stockage de l'énergie	ТР
 Double cliquer sur les batteries. 		
<u>Q6</u> : Expliquer pourquoi	on à 4 éléments appelés « Battery » en série ?	
Q5 : Que signifie NiMh ?		

Q7 : Compléter les paramètres de tension nominale, capacité et type de batterie en fonction des éléments fournis dans le cahier des charges.

Q8 : A l'aide du modèle Matlab compléter la colonne Ubat_modele_matlab du fichier « Ubat_ps_elv.xls » du **tableau 1**, en imposant les valeurs du courant qui ont été utilisées en pratique (question 4).

Ibat(A)	Ubat_modele_pratique(V)	Ubat_modele_matlab(V)
1,76	6,48	
1,05	6,52	
0,53	6,57	
0,46	6,58	
0	6,61	

Q9 : En déduire la valeur de la résistance interne R_{int}. Compléter le modèle simulé sur votre document réponse.

S	si

Robot Rovio – stockage de l'énergie

TP

Q10 : Double cliquer sur un bloc batterie, et expliquer au vu des différents paramètres de réglage, les éventuelles différences (pente, valeur à l'origine) entre la courbe pratique et la courbe réalisée sous Matlab. Déterminer l'état de charge de la batterie du ROVIO.

5. Calcul de l'autonomie pratique

On donne une vue du robot rovio capot enlevé :

<u>Q11</u> : Sur le document réponse, compléter la chaîne d'énergie en indiquant le nom de l'organe réalisant la fonction en dessous des blocs :

Rovio en mouvement

Q12 : Compléter la chaîne d'énergie en donnant la nature de l'énergie (mécanique de translation, mécanique de rotation ou électrique) qui circule entre les blocs.

S si

Robot Rovio – stockage de l'énergie

TP

Q13 : Rappeler l'expression de la puissance électrique, en précisant les grandeurs à mesurer ainsi que leurs unités :

Q14 : Indiquer les appareils de mesure permettant de mesurer ces grandeurs, en précisant le type de branchement (parallèle ou série) :

On donne une vue du montage expérimental :

Q15 : Proposer un protocole expérimental permettant de mesurer la puissance consommée par le Rovio en fonctionnement. **On se limitera à la marche avant, à vitesse maximale.**

Faire valider votre protocole par votre professeur.

Q16 : Après validation du protocole par votre enseignant, réaliser le câblage, **HORS TENSION**, puis appeler votre enseignant pour valider votre montage.

Q17 : Effectuer les mesures, et renseigner les différentes valeurs sur le document réponse :

Système sous tension, moteurs activés :		
(Marche avant)		
U _{tot} =	D -	
I _{tot} =	P _{tot} =	

On se propose à présent de valider la durée de l'autonomie définie dans le cahier des charges.

Q18 : Rappeler les valeurs de la capacité Q_{bat} et de la tension U_{bat} de la batterie du robot Rovio :

Robot Rovio – stockage de l'énergie

Q19 : En déduire l'énergie W_{bat} que peut stocker la batterie du robot Rovio :

Q20: Exprimer t_{auto} (la durée de l'autonomie de la batterie) en fonction de W_{bat} et de P_{tot}.

Q21 : Calculer l'autonomie du Rovio, le cahier des charges est-il respecté ?

6. Comparaison avec le modèle Matlab

Q22 : Sur votre document réponse et sur Matlab, compléter votre modèle puis effectuer la simulation. Les résultats, puissance et autonomie, sont-ils cohérents avec ceux trouvés en pratique ?

TP