VERSAIL	LES	<u>Pilote a</u> Stockage	<u>utomatique</u> de l'énergie	S-SI TP
Noms : Prénoms : Classe : Date :				
	Note :	/20	ý	

Problématique :

On souhaite choisir un modèle de batterie pour le pilote automatique. Le modèle de batterie choisi, permet-il d'assurer l'autonomie du pilote automatique donnée par le constructeur ?

Critères d'évaluation et barème :

Autonomie et quantité de travail	/3
Modéliser le comportement de la batterie du pilote automatique	/3
Comparaison avec le modèle Matlab	/4
Calcul de l'autonomie pratique	/5
Comparaison avec le modèle Matlab	/5

Analyse des écarts

Pilote automatique – Stockage de l'énergie

1. Mise en situation

S si

Le contrôle de la barre est assuré par un système mécanique associé à un actionneur électrique. La société a retenu pour cela un moteur à courant continu (**RS-755 SH MITSUBISHI**).

La barre du voilier pouvant être poussée ou tirée, il faut que l'axe du pilote puisse également fonctionner dans les deux sens. Il est donc indispensable que le moteur puisse tourner, à la demande du microcontrôleur (traitement de l'information), dans un sens ou dans l'autre.

TP

2. Cahier des charges du pousse-seringue

Alimentation électrique : Suivant le type de batterie dont vous disposez

Sur batterie 12 V 12 Ah au plomb	Sur batterie 12 V 9 Ah au plomb	Sur batterie 12 V 7.5 Ah au plomb	
gélifié	gélifié	gélifié	
Autonomia : 2 jours (cans charge)			

Autonomie : 2 jours (sans charge).

3. Modélisation du comportement de la batterie

Q1 : Pour modéliser la charge aux bornes de la batterie, nous allons utiliser une résistance variable. Sur le pilote automatique, à quoi correspond cette charge ? Comment pouvez-vous la faire varier ?

Q2 : Recopier le schéma ci-dessous en le complétant avec la lettre A pour ampèremètre et V pour voltmètre.

Q3 : Indiquez votre démarche pour obtenir la courbe U=f(I).

A partir du site des SSI, télécharger le fichier « Ubat_pilote_elv.xls ». Les mesures ont été effectuées par votre enseignant avant la séance de TP.

Q4 : Ouvrir le fichier sous Excel et analyser la courbe obtenue « Ubat_modele_pratique = f(Ibat) » du <u>tableau 1</u>, <u>POUR LE MODELE DE BATTERIE QUE VOUS AVEZ A VOTRE DISPOSITION</u>. À l'aide de votre cours, en déduire la valeur de la résistance interne R_{int}. Compléter le modèle pratique sur votre document réponse.

S si Pilote automatique – Stockage de l'énergie

TP

E=	
Rint=	

4. Comparaison avec le modèle Matlab

Matlab est un logiciel qui permet de créer des modèles mathématiques capables de simuler le comportement de phénomènes physiques.

A partir du site des SSI, télécharger le répertoire « modele_pilote_batt_elv »

La bibliothèque Matlab possède des blocs appelés « battery » qui simulent le comportement d'un accumulateur.

S si	Pilote automatique – Stockage de l'énergie	TP
 Double cliquer s 	sur « battery ».	
Q5 : Que signifie lead a	icid ?	

<u>Q6</u> : Compléter les paramètres de tension nominale, capacité et type de batterie en fonction des éléments fournis dans le cahier des charges, <u>POUR VOTRE BATTERIE</u>.

Q7: A l'aide du modèle Matlab compléter la colonne Ubat_modele_matlab du fichier « Ubat_ps_elv.xls » du **tableau 1**, en imposant les valeurs du courant qui ont été utilisées en pratique (question 4).

Ibat(A)	Ubat_modele	Ubat_modele
	_pratique(V)	_matlab(V)
0		
1		
2		
3		
4		

Q8 : En déduire la valeur de la résistance interne R_{int}. Compléter le modèle simulé sur votre document réponse.

Q9: Double cliquer sur un bloc batterie et expliquer, au vu des différents paramètres de réglage, les éventuelles différences (pente, valeur à l'origine) entre la courbe pratique et la courbe réalisée sous Matlab. Déterminer l'état de charge de la batterie du pilote automatique.

5. Calcul de l'autonomie pratique

On donne une vue du pilote automatique capot enlevé :

Q10 : Sur le document réponse, compléter la chaîne d'énergie en indiquant le nom de l'organe réalisant la fonction, en dessous des blocs :

Q11 : Compléter la chaîne d'énergie du document réponse en donnant la nature de l'énergie (mécanique de translation, mécanique de rotation ou électrique) qui circule entre les blocs.

Q12 : Rappeler l'expression de la puissance électrique, en précisant les grandeurs à mesurer ainsi que leurs unités :

Q13 : Indiquer les appareils de mesure permettant de mesurer ces grandeurs, en précisant le type de branchement (parallèle ou série) :

On donne une vue du montage expérimental :

<u>Q14</u> : Proposer un protocole expérimental permettant de mesurer la puissance consommée par le pilote automatique en fonctionnement. **<u>On se limitera à une étude SANS CHARGE.</u>**

Faire valider votre protocole par votre professeur.

Q15 : Après validation du protocole par votre enseignant, réaliser le câblage, **HORS TENSION**, puis appeler votre enseignant pour valider votre montage.

Q16 : Effectuer les mesures, et renseigner les différentes valeurs ci-dessous :

Système sous tension,	<u>moteur activé :</u>
(Sans charge)	
U _{tot} =	D -
I _{tot} =	P _{tot} =

Nous allons maintenant calculer l'autonomie du pilote automatique pour vérifier qu'elle est conforme au cahier des charges

Pilote automatique – Stockage de l'énergie

Q17 : Rappeler les valeurs de la capacité Q_{bat} et de la tension U_{bat} de la batterie du pilote automatique :

Q18 : En déduire l'énergie W_{bat} que peut stocker la batterie du pilote automatique :

Q19 : Exprimer t_{auto} (la durée de l'autonomie de la batterie) en fonction de W_{bat} et de P_{tot}.

Q20 : Calculer l'autonomie du pilote automatique. Le cahier des charges est-il respecté ?

Q21 : Quelle devrait être la capacité de la batterie afin de répondre au cahier des charges ?

6. Comparaison avec le modèle Matlab

Q22 : Sous Matlab, compléter votre modèle puis effectuer la simulation. Les résultats, puissance et autonomie, sont-ils cohérents avec ceux trouvés en pratique ?

Q23 : Modifier les valeurs de votre modèle afin de le rendre cohérent avec les valeurs du cahier des charges.

TP