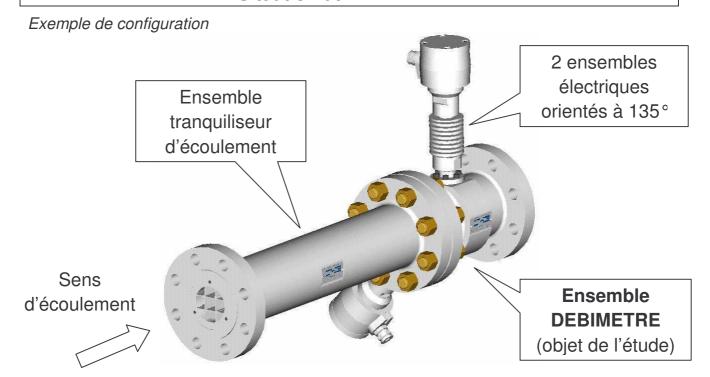
BREVET DE TECHNICIEN SUPERIEUR

INDUSTRIALISATION DES PRODUITS MECANIQUES


E4: ÉTUDE DE PRÉINDUSTRIALISATION

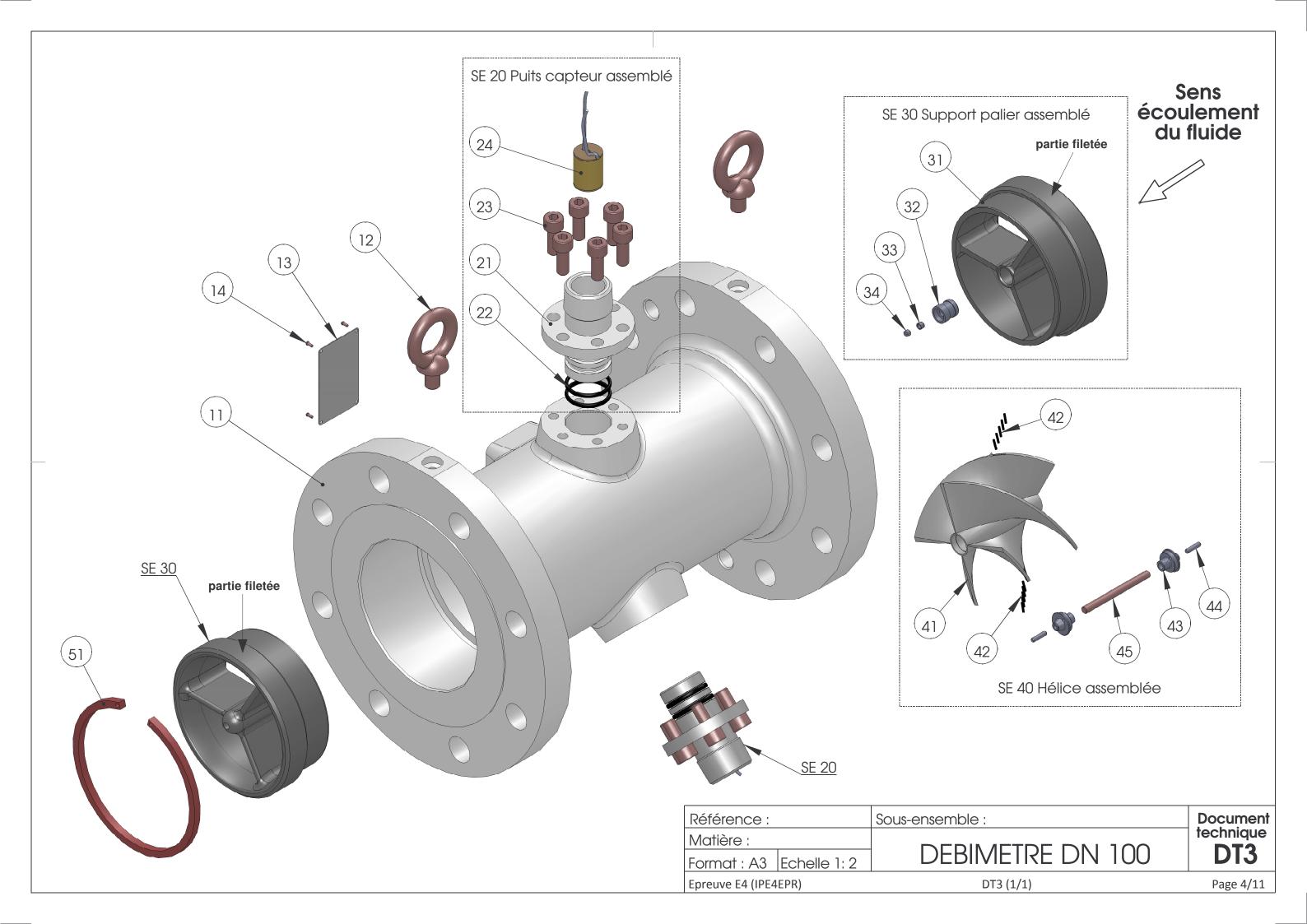
DOSSIER TECHNIQUE

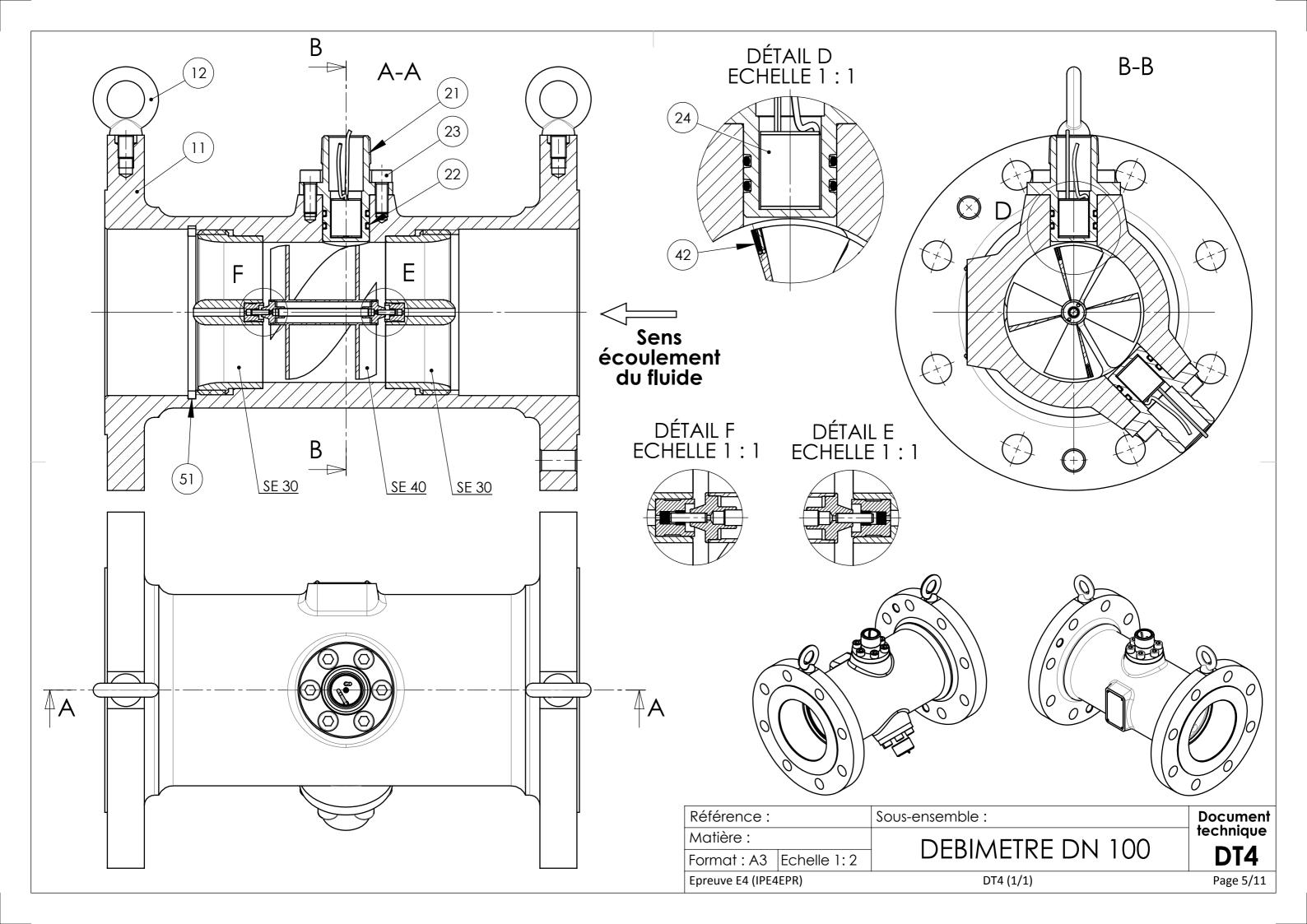
Contenu du dossier :

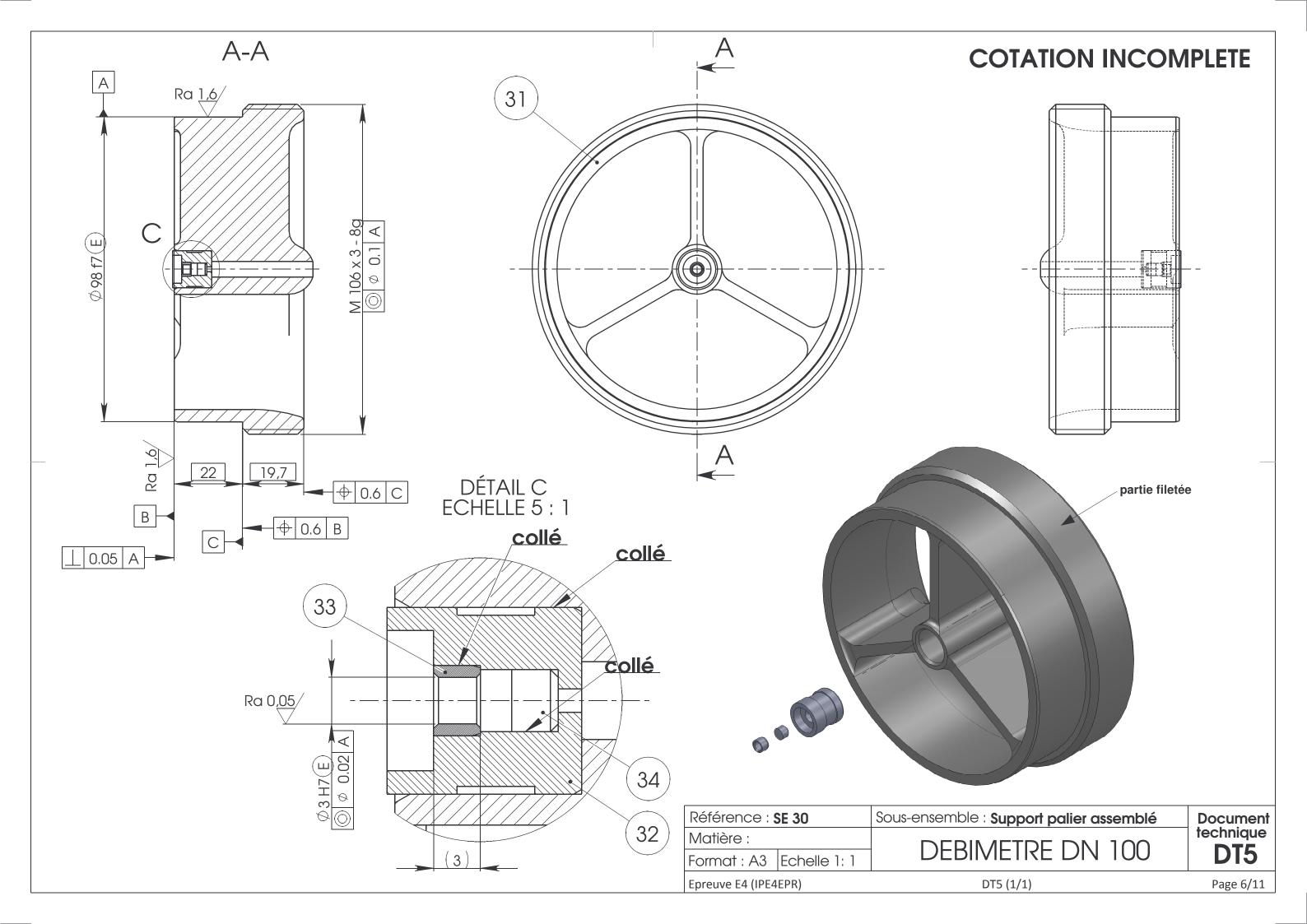
DT	Intitulé	Page(s)
DT1	Situation du DEBIMETRE – Nomenclature des pièces	Page 2
DT2	Analyse fonctionnelle du produit	Page 3
DT3	Dessin d'ensemble éclaté du DEBIMETRE DN100	Page 4
DT4	Dessin d'ensemble du DEBIMETRE DN100	Page 5
DT5	Dessin du sous-ensemble Support palier assemblé	Page 6
DT6	Dessin du sous-ensemble Hélice assemblée	Page 7
DT7	Processus H1 de l'hélice	Page 8
DT8	Processus prévisionnel H2 de l'hélice	Page 9
DT9	Dessin de définition du Corps DN100	Page 10
DT10	Processus prévisionnel du Corps DN100	Page 11

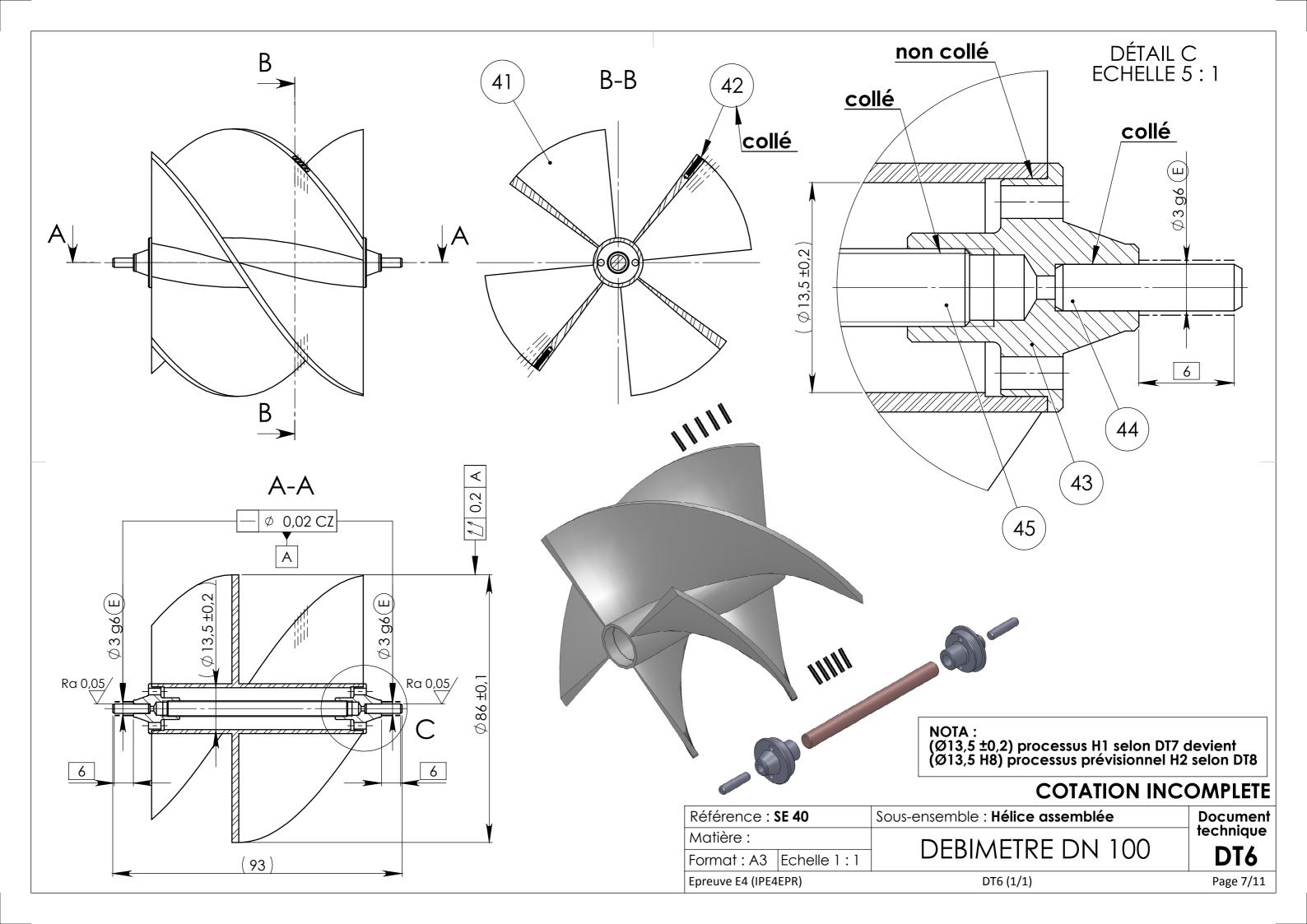
Situation du DEBIMETRE

Nomenclature des pièces (partielle)


Repères	Quantité	Désignation	Matériau	Commentaires
11	1	Corps	X6CrNiMo19-11-2	moulé
12	2	Anneau de levage		
13	1	Plaque signalétique		
14	4	Rivet		
21	2	Puits de capteur vissé	X2CrNiMo18-10	ø1.7 - 4
22	4	Joint torique		ø25x3,6
23	12	Vis Chc M8-20	(Inox)	Classe 80
24	2	Capteur à effet hall		
31	2	Support palier	X6CrNiMo19-11-2	moulé
32	2	Palier fixe		
33	2	Coussinet	carbure de tungstène	ø3-ø4,5-3
34	2	Butée	carbure de tungstène	ø3,5-3
41	1	Hélice		
42	10	Aimant		ø1,4 lg 8,8
43	2	Moyeu de pivot	X6CrNiMo19-11-2	
44	2	Axe de pivot	carbure de tungstène	ø3-12
45	1	Vis de liaison (Inox)		tige filetée - M5 lg 58
51	1	Anneau élastique		


Analyse fonctionnelle du produit (partielle)


Fonction de service		Fonctions techniques		Solutions technologiques	
FP1 : Mesurer le débit du fluide		FT1 : Eviter les turbulences dans le fluide		Tranquiliseur d'écoulement	
acsit du naide		FT2 : Utiliser le déplacement du fluide pour mettre un rotor (*) en mouvement		Forme du rotor en hélice Choix d'un matériau léger	
		FT 3 : Guider en rotation le rotor		Objet de la question 1.1	
		FT4 : Détecter le mouvement du rotor		Objet de la question 1.1	
C1 : Résister aux agressions du fluide		FT5 : Résister à la corrosion pour les pièces en contact avec le fluide		Choix de matériaux résistant à la corrosion pour le corps, l'hélice, le support de palier	
C2 : Résister à la pression du fluide		FT6 : Résister à la pression de service du fluide		Dimensionnement et choix de	
C3 : Résister aux conditions de montage et de maintenance		FT7 : Résister aux contraintes mécaniques liées à l'assemblage sur site et à la maintenance		matériaux adéquats	
C4 : Résister aux agressions extérieures		FT8 : Résister à l'atmosphère saline		Choix de matériaux résistant à une atmosphère saline.	
C5 : Supporter les variations de températures		FT9 : Etre adapté aux grandes variations de température		Choix de matériaux gardant leurs caractéristiques sur une grande amplitude de température	
C6: S'adapter à l'installation		FT10 : Respecter la normalisation des brides pour le raccordement avec les canalisations		Brides (**) normalisées aux deux extrémités du débitmètre	
C7 :					


^(*) rotor : partie tournante d'un mécanisme rotatif (exemple le rotor d'un moteur électrique, le rotor d'une pompe centrifuge).

(**) bride : partie du corps servant à l'assemblage bout à bout de deux canalisations.

PROCESSUS H1

EXTRAIT de l'Avant-Projet de Fabrication

Ensemble : DEBITMETRE DN100

Désignation : **Hélice** Repère : **41** Matière : Titane (Ti) Nom commercial : T40

Nature du brut : étiré Ø 90

Pré-série de 25 pièces Temps unitaire total : 45.85 minutes

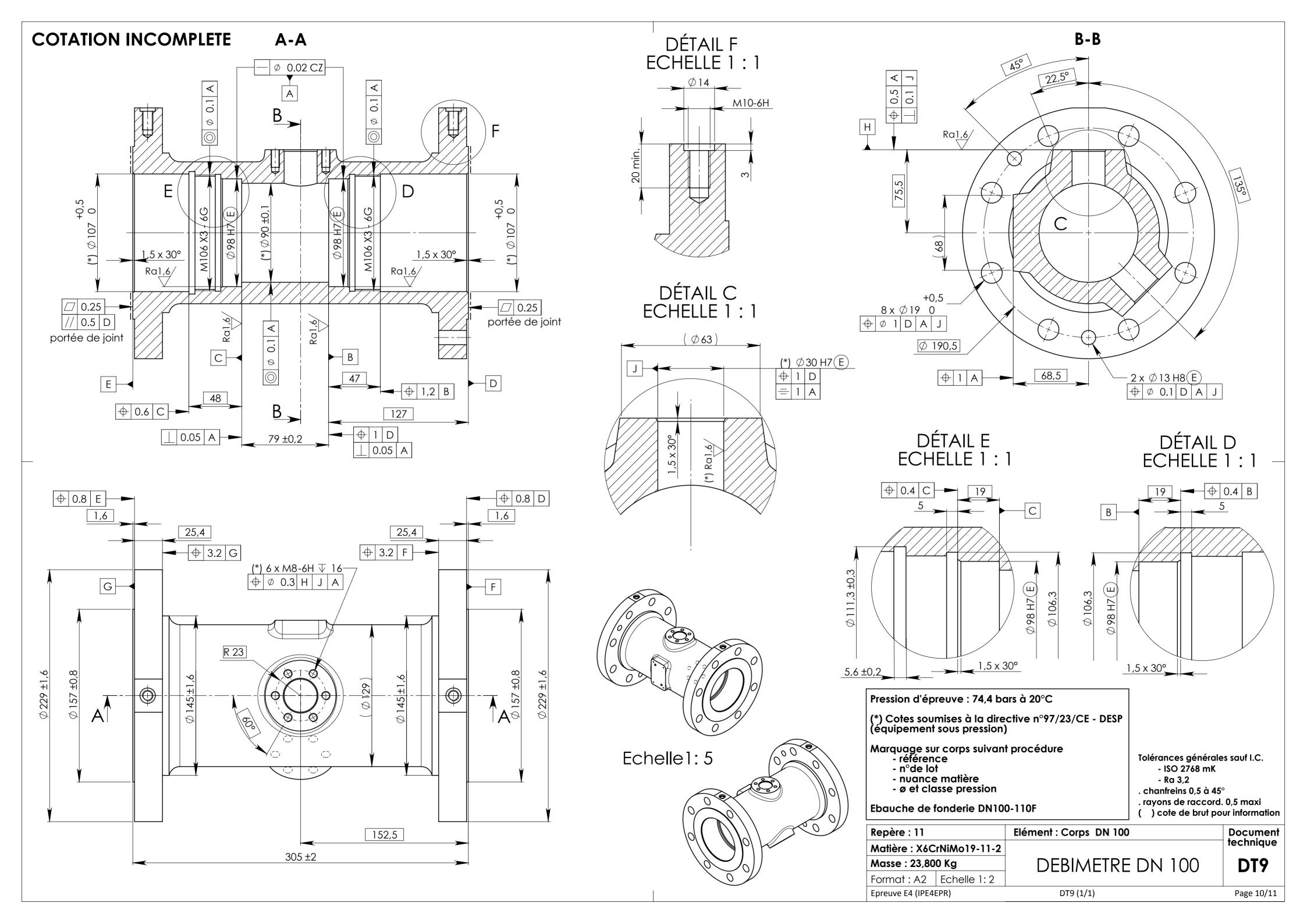
N° phase	Désignation des phases et opérations	Machine-outil	Représentation	Temps unitaire en cmin : centième de minute
00	Sciage du brut Longueur : L = 140 mm Masse du brut = 4 kg	Scie à ruban automatique		120
10	Tournage Sous-phase A: Face + Ø 86 (sur une longueur L = 76 mm) Trou de centre Sous-phase B: Usinage du manchon de reprise Ø32	Tour 2 axes	Coté a Coté b	2060
20	Fraisage Fraisage des pales de l'hélice Perçage des trous pour les aimants	CU Vertical 4 axes mandrin 3 mors doux Ø32 et contre-pointe		2140
30	Tournage Perçage Ø13.5 ±0.2 Face coté a Alésage portée pièce 43 côté a	Tour 2 axes	Coté a	170
40	Sciage Découpe du manchon	Scie à ruban manuelle		25
50	Tournage Face côté b Alésage portée pièce 43 côté b	Tour 2 axes	Coté b	70

Document technique **DT7**

PROCESSUS PREVISIONNEL H2

EXTRAIT de l'Avant-Projet de Fabrication

Ensemble : DEBITMETRE DN100


Désignation : **Hélice** Repère : **41** Matière : Titane (Ti) Nom commercial : T40

Nature du brut : étiré Ø 90

Série de 250 pièces par lot de 25 Temps unitaire total : 34.10 minutes

N° phase	Désignation des phases et opérations	Machine-outil	Représentation	Temps unitaire en cmin : centième de minute
00	Sciage du brut Longueur : L = 72 mm	Scie à ruban automatique		120
10	Tournage Sous-phase A Face coté a et \varnothing 86 (sur une longueur L = 36 mm) Alésage \varnothing 13.5 H8 Sous-phase B Face coté b + \varnothing 86	Tour 2 axes	Coté a Coté b	370
20	Collage du mandrin de reprise Nettoyage pièce et mandrin Collage : LOCTITE 638	Poste de collage	•	200
30	Fraisage Fraisage des pales de l'hélice Perçage des trous pour les aimants	CU Vertical 4 axes mandrin 3 mors doux Ø32 et contre-pointe		2140
40	Décollement du mandrin Chauffage 200 ℃ Extraction mandrin Nettoyage des résidus de colle	Poste de collage		300
50	Tournage Sur mandrin expansible dans Ø 13.5 H8 Sous-phase A Face coté a Alésage portée pièce 43 côté a Sous-phase B Face coté b Alésage portée pièce 43 côté b	Tour 2 axes	Coté a Coté a	280

Document technique DT8

Processus prévisionnel Corps DN100

N° phase	Désignation des phases	Machine	Croquis de phase
00	Moulage	sous-traité	
10	Tournage (Bride 1 ^{er} coté) Finition extérieure Perçage 8x Ø19 Alésage 2x Ø13H8 (Intérieur 1 ^{er} coté) Finition Ø107 Ebauche Ø90, Ø98H7, M106	Tour 3 axes	2-3 4
20	(Bride 2 ^{ème} coté) Finition extérieure Perçage 8x Ø19 (Intérieur 2 ^{ème} coté) Finition Ø107, Ø90 Finition 2x Ø98H7 Gorges 3x Filetages 2x M106	Tour 3 axes	2-3 4
30	Fraisage Surfaçages Perçage 2x Ø29 Alésage 2x Ø30H7 Perçage-taraudage 12x M8 Perçage-lamage- taraudage 2x M10	CU Vertical 4 axes mandrin 3 mors doux + contre-pointe	B-B z A y a a a a a a a a a a a a a a a a a a
40	Contrôle final	MMT	
50	Contrôle pression		Pression épreuve 74,4 bars à 20°

Document technique : DT10