

Maths vocabulary

Ordinal numbers

1 st	first	$10^{\rm th}$	tenth	20^{th}	twentieth	100 th	hundredth
2 nd	second	11 th	eleventh	21st	twenty-first	101 st	hundred and first
$3^{\rm rd}$	third	12 th	twelfth	22 nd	twenty-second	200 th	two hundredth
4 th	fourth	13 th	thirteenth	30^{th}	thirtieth	1,000 th	thousandth
5 th	fifth	14 th	fourteenth	40 th	fortieth	1,345 th	one thousand three hundred
6 th	sixth	15 th	fifteenth	50 th	fiftieth		and forty-fifth
7^{th}	seventh	16 th	sixteenth	60 th	sixtieth	1,000,000 th	millionth
8 th	eighth	17^{th}	seventeenth	70^{th}	seventieth	1,000,000,000 th	billionth
9 th	ninth	18 th	eighteenth	80 th	eightieth		
		19 th	nineteenth	90 th	ninetieth		

How to read fractions

1/2	one half	1/4	one quarter / one fourth	3/2	three halves	6/8	six eighths
1/3	one third	1/5	one fifth	3/4	three quarters	4/9	four ninths

Basic arithmetic

Operation	Example	Say it like this	
Addition	5+3=8	five plus three equals eight five added to three equals eight	
Subtraction	10-6=4	ten minus six equals four ten minus six is four six subtracted from ten equals four	
Multiplication	2x9=18	two multiplied by nine equals eighteen two times nine is eighteen two times nine equals eighteen	
	2(a+b)	two times the sum of a plus b	
Division	16÷2=8	sixteen divided by two equals eight sixteen divided by two is eight	
	10/20	ten over twenty	

Definitions

Equation \rightarrow e.g. $3y^2 - 4y + 3 = 8$

Variable → A letter representing, or standing in place of, an unknown amount

Formula → e.g. U=R.I

Coefficient \rightarrow A number placed in front of a variable or brackets, e.g. 3y or 4(y+z)Term \rightarrow An element in an equation. In the following equation $3y^2 - 4y + 3 = 8$, 3y2 or 4y or 3 or 8 are terms

Numerator → The upper number of a fraction, e.g. in ³/₄ the numerator is 3

Denominator → The lower number of a fraction, e.g. in ¾ the denominator is 4

Fraction → An expression showing one number divided by another e.g. ³/₄

Integer → A whole number, e.g. 2

Decimal number → A decimal number contains a decimal point separating the whole number from the decimal part

Common factor → A common number or variable that divides into another number, e.g. y=3x+6x, x is a common factor

Powers \rightarrow The power of a number tells you how many times to multiply the number by itself, e.g. 3^2 , 2 is the power

Square \rightarrow A number multiplied by itself (a power of two) e.g. $3^2 = 9$ (square of three is nine)

Square root \rightarrow The opposite to finding the square of a number, if $x^2 = y$ then $x = \sqrt{y}$ (x equal square root of y)

Cube \rightarrow A number multiplied by itself three times (a power of three) e.g. $2^3 = 8$

Cube root \rightarrow If $x^3 = y$, then x is the cube root of y, i.e. $x = \sqrt[3]{y}$

Negative number → A number or variable whose value is less than 0, e.g. -2

Positive number → A number or variable whose value is greater than 0, e.g. +2

Calculation > When we add, subtract, multiply, and divide numbers we make a calculation

Result → e.g. When we add 6 and 5 the result is 11

Percentage → Out of 100. Also a fraction with 100 in the denominator

even → e.g. 2, 4, 6, 8, 10, 12, 14, ...

odd or **uneven** → e.g. 1, 3, 5, 7, 9, 11, 13, 15, ...

Subscript → e.g U1,U2,U3 (1, 2 and 3 are the subscript)

Subject \rightarrow e.g. y = x - 2 (y is the subject). Make x the subject of this equation becomes x = y + 2

Maths vocabulary

Expressions

Solve an equation \Rightarrow Find value of the variable that satisfy an equation Simplify \Rightarrow e.g. 8/12 = 2/3

Cancel → e.g. y + 5 = x + k + 5

Invert \rightarrow Turn upside down, e.g. inverting $\frac{5}{3}$ becomes $\frac{3}{5}$

Approximating → Giving a number near to its true value when an exact value of that number is not required **Estimate** → Round the numbers into easy, convenient numbers, for use in a calculation

Rounding - A way of approximating numbers when an exact value is not required

Rearranging or Changing the subject \Rightarrow e.g. rearrange the following equation y = x - 2 in terms of x becomes x = y + 2

e.g. change the subject of y = x - 2 to x becomes x = y + 2

Expanding brackets or Multiplying out \rightarrow Multiplying terms by the contents of the brackets e.g. 4(x+2) = 4x + 8

Increase → e.g. Increasing a value of 100 by 20 is 120

Decrease → e.g. Decreasing a value of 100 by 20 is 80

Reciprocal \rightarrow The reciprocal of x is $\frac{1}{x}$

Cross-multiplying \Rightarrow e.g. $\frac{a}{b} = \frac{c}{d}$ giving a.d = cb

Factorising \Rightarrow e.g. Extracting the factor of 7x + xy = x(7+y)Correct \Rightarrow Right, true Incorrect \Rightarrow False, not true, wrong, when you make mistakes or errors

Greater than → e.g. 36 is greater than 35

Greater than or equal to → e.g. Your have success in exam when your result is greater than or equal to ten.

Less than → e.g. 34 is less than 35

Calculate or Compute→ We calculate when we add, subtract, multiply, and divide numbers

Add → e.g. When we add 2 and 3 the result is 5, when we add 2 to 3 the result is 5

Subtract → e.g. When we subtract 2 of 3 the result is 1, when we subtract 2 from 3 the result is 1

Multiply → e.g. When we multiply 2 by 3 the result is 6

Divide \rightarrow e.g. When we divide 2 by 3 the result is 0.666

Substituting → e.g. Replacing a term in an equation by an other equation

Examples

Examples	Say it like this
10 ⁴	ten exponent four, ten exp four, ten to the exponent four, ten to the power four, ten to the four, four is the exponent of ten
68.10 ³	sixty eight times ten exponent three
0.92.10 ⁻⁵	nought point nine two times ten exponent minus five (We replace "," by a ".")
10-4	ten to the negative four
$R = \frac{V}{I}$	R equals V over I R equals V divided by I
V= IR	V equals I R ; V equals I by R V equals I multiplied by R
$V(t) = V_M.\cos(wt - \Phi)$	V of t equals V sub M by cosine open brackets wt minus $\boldsymbol{\phi}$ close brackets
$\Delta = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(x_i - m \right)^2}$	Δ equals root of 1 over N by the summation from one to N of x sub i minus m all to the square
y = f(x)	y equals f of x
$\frac{T^2}{a^3} = const$	T squared over a cubed equals constant
$\alpha = \tan^{-1} \left(\frac{y}{x} \right)$	α equals inverse tangent open brackets y over x close brackets
$\sinh x = \frac{e^x - e^{-x}}{2}$	Hyperbolic sine x equals e to the power x minus e to the power minus x, all over 2