National 5 Computing Homework
Computational Thinking

Topic 5 - Built-In Functions

Grade - / 32

Feedback

All programming languages have built-in functions that allow basic tasks to be carried out without the need for additional code.

A few examples of text functions (in the language Python 3.3) are shown below:
len() The Length function counts the number of characters in a string

$$
\begin{aligned}
& \text { word = "Century" } \\
& \text { print(len(word)) }
\end{aligned}
$$

Output from Program
7
count() The Count function returns the number of times one string occurs in another string Note - The count function is case sensitive so in the example below only 2 occurrences of "s" are found. The capital S is not counted.

```
sentence = "Six rain ridden summers"
``` print(sentence.count("s"))

replace() The Replace function finds some given text in a string and replaces it with alternative text.
```

motto = "Work Hard, Study Hard"
newMotto = motto.replace("Hard","Well")
print(newMotto) print(newMotto)

```
\begin{tabular}{|l|}
\hline Output from Program \\
\hline Work Well, Study Well \\
\hline
\end{tabular}
1. For each of the small programs below write down the expected output.
a) \(\quad\) word \(=\) "Processor"

print(len(word))

b) usersGuess = "Rio Grande"
print(len(word))
wordsTogether \(=\) wordOne + wordTwo

d) lyrics = "Don't criticize what you can't understand" print(lyrics.count("c"))
fascinating: people who know absolutely everything, and people who know absolutely nothing. - Oscar Wilde"

print(quotation.count("re"))

f) quotation = "One day I will find the right words." quotationTwo = quotation.replace("find"," discover") print(quotationTwo)
g) quotation = "I met an old lady once, almost a hundred years old, and she told me..."
quotation = quotation.replace("lady","gentleman")

2. The following examples combine two or more of the text functions. Like before, try and predict the output from the following. You may wish to use a bit of scrap paper to scribble your working on.
a) word \(=\) "Code \& Coding"

print(word)
print(len(word))

(1)
b) quotationPart \(=\) "Nobody"
quotationPart3 = "consent"
total \(=\) len(quotationPart1) + len(quotationPart3) + quotationPart2.count("e")
print(total)
c) password = "hheeh_shh01"

password = password.replace("hh","fff")
print("Number of characters in password =", len(password))
d) sentenceOne \(=\) "The to boys learned to new skills"
sentenceTwo = sentenceOne.replace("to","two")

sentenceThree = sentenceTwo.replace("boy","girls")
totalLetterW = sentenceOne.count("w") + sentenceTwo.count("w") + sentenceThree.count("w")
totalLetterB = sentenceOne.count("b") + sentenceTwo.count("b") + sentenceThree.count("b") print(totalLetterW + totalLetterB)
e) messageScrambled = "t s d 20:30"
if len(messageScrambled) \(>=15\) :
messageScrambled = messageScrambled.replace(" \(t\) ","Don't")
messageScrambled = messageScrambled.replace("s","Arrive")
messageScrambled \(=\) messageScrambled.replace("d","at")
else:
messageScrambled \(=\) messageScrambled.replace(" t ","Meet")
messageScrambled = messageScrambled.replace("s","me")
messageScrambled = messageScrambled.replace("d","at")
if (len(messageScrambled) \(>=15\) :
message \(=\) messageScrambled.replace("20","18")
else:

message \(=\) messageScrambled.replace(" 30 "," 15 ")
print(message)
3. Using the inputs given, predict what the output will be from the following small program.
\[
\text { usersWord = } \operatorname{str}(\text { input("Please enter a word of your choice")) }
\]
a = usersWord.count("a")
e = usersWord.count("e")
i = usersWord.count("i")
o = usersWord.count("o")
\(u=\) usersWord.count("u")
vow \(=\mathrm{a}+\mathrm{e}+\mathrm{i}+\mathrm{o}+\mathrm{u}\)
cons \(=\) len(usersWord) - vow
print("Vowels =", vow,", Consonants =",cons)
a)
c)
d)

The most common type of built-in functions found in programming languages are mathematical functions.
A few examples of mathematical functions (in the language Python 3.3) are shown below:
round() The Round function reduces the number of decimal places in a number rounding up or down as required. In the example below 4.6783 is rounded to 1
decimal place.
\[
\begin{aligned}
& \text { number }=\text { round }(4.6783,1) \\
& \text { print }(\text { number })
\end{aligned}
\]
\begin{tabular}{|l|}
\hline Output from Program \\
4.7 \\
\hline
\end{tabular}
int() The Integer function changes a real number into an integer by removing all the decimal places, without rounding up or down.
\[
\begin{aligned}
& \text { number }=4.6783 \\
& \text { print(int(number)) }
\end{aligned}
\]
```

Output from Program
4

```
ceil() The Ceiling function round a real number up to the nearest integer. Note that this function requires "import math" at the top of your program.
```

import math
number = math.ceil(4.6783)
print(number)

```
\begin{tabular}{|l|}
\hline Output from Program \\
\hline 5 \\
\hline
\end{tabular}
\% The Modulus function calculates the remainder when one number is divided by another.
\[
\begin{aligned}
& \text { leftOver }=13 \% 5 \\
& \text { print(number) }
\end{aligned}
\]

pow() The Power multiplies one number to the power of another number.
The example below would calculate 4 to the power of 2 (or 4 squared).
\[
\text { answer }=\operatorname{pow}(4,2)
\]

4. For each of the small programs below write down the expected output.
a) height \(=193.734\)
print(round(height,2)
b) \(\quad\) shoeSize \(=10.3\)
print(round(shoeSize,0))
c) \(\quad\) weight \(=78.65\)
print(math.ceil(weight))

(1)
ph(m) (weigh)

d) \(\quad\) offcut \(=25 \% 7\)
print(offcut)

e) \(\quad\) value \(=12.5 \% 3\)
print(math.ceil(value))
f) measurement \(=3.48\)
woodNeeded \(=\) math.ceil(measurement)
print(woodNeeded)

g) \(\quad\) value \(=57.884\)
value \(=\operatorname{round}(\) value, 1\()\)
print(ceil(value))
h) \(\mathrm{cat}=5.91\)
\(\operatorname{dog}=\operatorname{int}(c a t)\)

print(pow(dog,2))
i) \(\quad\) cake \(=99.9999\)
cake \(=100-\operatorname{int}(\) cake \()\)

(1)
cake \(=\) cake +2
print(pow(cake,cake))
j) \(\quad\) guess \(=12\)

guess2 \(=\) pow(guess,2)
\(\operatorname{print}(\operatorname{int}((\) guess2-44)/3))
5. Using the inputs given, predict what the output will be from the following program.
import math
usersOption \(=\operatorname{str}(\) input("Please enter a mathematical function of your choice"))
numberOne \(=\) float(input("Please enter the first number"))
numberTwo \(=\) float(input("Please enter the second number"))
if usersOption == "integer":
answer \(=\operatorname{int}(\) numberOne + numberTwo)
elif usersOption == "modulus":
answer \(=\) numberOne\%numberTwo
answer \(=\) numberOne\%answer
elif usersOption == "ceiling":
answer \(=\) math.ceil(numberOne + numberTwo \()\)
answer \(=\) math.ceil(answer/2)
elif usersOption == "square":
answer \(=\operatorname{pow}((\) int(numberOne \()+\operatorname{int}(\) numberTwo \(), 2)\)
answer \(=\operatorname{pow}(\) int(numberOne),2) + answer
elif usersOption \(==\) "round":
answer \(=\operatorname{round}((\) numberOne + numberTwo \(), 1)\)
answer \(=\operatorname{round}(\) answer \(+0.7,0)\)
else:
answer \(=\operatorname{int(numberOne)}+\) pow(numberTwo,2) + math.ceil(numberOne) + round(numberTwo,2)
print(answer)
```

