
HP794-60-3

PICmicro and PIC are trademarks of
Microchip Technology Inc.

 Page 1

Copyright © 2007
Matrix Multimedia Limited

Details correct at time of going to press. Matrix Multimedia reserves the right to change specification.

FORMULA
FLOWCODE

An introductory course
Introduction

Formula Flowcode it intended to be used with
students from 14+ as a motivating resource for
learning about electronics and technology. With this
in mind this guide sets out the first 5 stages of
learning that can be carried out with Formula
Flowcode.

In each of the stages we outline the concepts that
will be introduced to students and the Flowcode
icons that are to be introduced. We then develop
example programs to illustrate these concepts and
finally provide a summary of the concepts learned
and suggestions fro further work.

The approach teachers should take here will depend
on the background and capability of students. For
those with little experience of electronics and
technology we have provided a suite of hardware
macros which enable students to drive the Formula
Flowcode robot very easily. These macros are
available to Flowcode users when they put the
Formula Flowcode component in the Flowcode
workspace.

This means rather than students having to
understand how Pulse Width Modulation is used for
motor speed control, students are able to simply set
the speed of a motor (between 0 and 255), and also
to set the motor in a forwards or reverse direction.
Students can also set the robot to spin, take a light
sensor reading, etc. These macros also mean that
students avoid issues of how sensors are connected
to the PICmicro microcontroller, and issues
concerning A/D sampling etc.

Other, more experienced, students might find this
approach a little superficial and will want to
immediately ‘get under the hood’ of Flowcode by
understanding the overall circuit diagram, PICmicro
microcontroller connections, etc.

Teachers using Formula Flowcode may go through
these exercises twice - a first time to introduce
students to the concepts of control, and a second
time to delve deeper into the subject.

However as most problems occur at a lower level
this resource will concentrate on typical first time
users to Formula Flowcode.

Note that all of these challenges are well within the
capabilities of the free version of Flowcode shipped
with the Formula Flowcode robot.

How to use this resource

It is possible to use this document as a stand-alone
course to give to students, but this depends on the
level of the students and how well they can direct
their own learning experience.

More likely, this course can be used to give teachers
a short introduction to the capabilities of the
Formula Flowcode robot and how it can be used in
an educational context.

The structure of the course can be retained and
used as a framework around which the topics of
control can be introduced. With each topic,
students should be shown the basic concepts and
then very quickly asked to develop their own
programs. In practice it should be possible to teach
someone of 12+ using this framework.

Resources you can use to help you

There are several resources you can use for
assistance

• With Flowcode there are 28 example files

that demonstrate how Flowcode works.
• With this document there are 13 sample files

that you can use to demonstrate the
individual concepts.

• On the Matrix Multimedia web site you will
find a number of videos that show how you
can get started with Flowcode.

• On the Matrix Multimedia web site there is a
downloadable learning resource entitled ‘An
introduction to microcontroller
programming’ which gives a detailed
introduction to PICmicro microcontrollers
and Flowcode programming.

• On the Matrix Multimedia web site there is a
user’s forum where you can ask questions on
Flowcode and/or the Formula Flowcode
robot.

HP794-60-3

PICmicro and PIC are trademarks of
Microchip Technology Inc.

 Page 2

Copyright © 2007
Matrix Multimedia Limited

Details correct at time of going to press. Matrix Multimedia reserves the right to change specification.

FORMULA
FLOWCODE

Level 1 - Nuts and bolts
Fundamentals of programming the robot

Concepts

• Creating a flowchart program
• The Formula Flowcode component
• Simulation of the program
• Running the program on the robot

• Hardware macro icon
• Delay icon
• Loop icon

Program 1.1 - Turning an LED on

This first program will simply turn an LED on for a few seconds, and
then turn it off again.

1) Run Flowcode V3.

2) Select “Create a new Flowcode flowchart…” on the opening
screen and click “OK”.

3) Select the “Formula Flowcode Buggy” as the target device and click “OK” (see screenshot above).

4) Click the “Formula Flowcode” component icon:

5) Drag the “Component Macro” icon onto the flowchart between the “Start” and “Stop” icons.

6) Your program will now look like this:

7) Double-click this new icon.

8) The window on the right will be displayed. Select the
“FormulaFlowcode(0)” component, then the “LEDOn” macro.
Type “3” into the “parameters” box. Also add an appropriate com-
ment into the “Display name” box. Once you have finished, click
the “OK” button.

9) Next, drag a “Delay” icon onto the flowchart immediately below the previous icon.
Double-click this delay icon and select 2 seconds as the delay time. Also, add an ap-
propriate “Display name” and then click “OK”.

10) Finally, add another “Component Macro” icon to the end of your flowchart. Edit its proper-
ties so that LED 3 is turned off (using the “LEDOff” macro). Your finished program should
look similar to that on the right.

11) Save your program (File...Save), giving it an appropriate name.

12) Simulate the program by clicking the “Run” button. You should see LED 3 on the Formula
Flowcode window light for a few seconds.

Ex 1.1

HP794-60-3

PICmicro and PIC are trademarks of
Microchip Technology Inc.

 Page 3

Copyright © 2007
Matrix Multimedia Limited

Details correct at time of going to press. Matrix Multimedia reserves the right to change specification.

FORMULA
FLOWCODE

Program 1.2 - Flashing the LEDs

The next program will use a loop to flash all of the LEDs on and off.

1) Create a new flowchart as before. Remember to select the “Formula Flowcode

Buggy” as the target and click the “Formula Flowcode” component icon.

2) Very often in programming, it is essential that the microcontroller runs a pro-
gram forever. For this, we will use the “Loop” icon. This icon can either loop a
certain number of times, or it can loop while a certain condition is true.

3) Add the “Loop” icon to your blank flowchart and edit its properties so that it loops
forever. To do this, edit the “Loop while” box so it displays “1=1” (1 is always
equal to 1, so the loop condition is always true and the loop is repeated forever).
Alternatively, write “1” into this box - this is also always true.

4) Within the two Loop icons, add a “Component Macro” icon. Change it so that it
calls the “WriteLEDs” macro and set its parameter to “255” . This will turn all of
the LEDs on.

5) Why use 255 to turn on all of the LEDs? This macro uses a binary value to repre-
sent the state of each LED - 0 for off and 1 for on. To turn on all 8 LEDs, we need
to send the binary value of “11111111” to the macro (which is 255 in decimal).

6) Add additional icons to your program so that the finished program looks like the one
on the right.

7) Save this program and then simulate it using the “Run” button. You can also
pause the program and step through each icon one at a time during simulation.

8) The LEDs on the simulation should flash on and off. This will continue forever until
you stop the simulation.

9) To send the program to the Formula Flowcode robot, connect the robot to the
PC using a USB cable, turn it on, and then press the “Compile to chip” button.

10) Once the program has been downloaded, press one of the switches (RB4 or RB5) to
make the program run.

Summary

You should now know be able to:

• Create basic flowchart programs for the Formula Flowcode robot.
• Simulate these programs on screen.
• Download these programs to the robot and see them running.

Further work

• Display alternating patterns on LEDs (e.g. 10101010 to 01010101 OR 11110000 to 00001111)
• Create an “LED chaser” program (Cylon or Knight-Rider effect).
• Experiment with other hardware macros for Formula Flowcode, e.g.

• Driving forwards for 1 second and then stopping
• Use the “PlayNote” macro to make some sounds

Ex 1.2

HP794-60-3

PICmicro and PIC are trademarks of
Microchip Technology Inc.

 Page 4

Copyright © 2007
Matrix Multimedia Limited

Details correct at time of going to press. Matrix Multimedia reserves the right to change specification.

FORMULA
FLOWCODE

Level 2 - Shape ‘n’ shuffle
Taking the robot for a drive.

Concepts

• Controlling the motion of the robot
• Motor characteristics
• Open-loop control

• More about loops
• Modular programming
• Macros

Program 2.1 - Forward and back again

The program on the right shows a simple use of the inbuilt macros “Forward”, “Reverse” and
“Stop” to control the movement of the Formula Flowcode robot.

Create this program in Flowcode and then download it to the robot. Once it has been
downloaded, you will need to press one of the switches at the front of the robot to start the
program (this is an option in the “properties” window of the Formula Flowcode component).

One thing you might notice is that the robot bends slightly to the left or right. This is because
the motors are not turning at exactly the same speed due to slight mechanical variations be-
tween the motors. The macro “SetMotors” allows you to specify a different value for each
motor and would allow you to compensate for this issue.

A nicer program would be one that drives forwards, turns around, and then drives back. We
will modify the program on the right so that it does this.

Ex 2.1

Ex 2.2

Program 2.2 - Turning around

The obvious way to make the robot turn around is to use the SpinLeft (or SpinRight) macro,
but there is an immediate problem - how to we know when the robot has completed a turn of
180°? The simple answer is that we don’t! We need to use trial and error to determine the
required time delay.

The program on the right shows the basic principal - 2 additional icons have been added (the
“SpinLeft” macro call and an extra delay), and the macro call to “Reverse” has been altered to
“Forward”. You will need to experiment with the values of the delay (or the speed of the
“SpinLeft” macro) to find the one that works for you.

This program is an example of “open-loop control”. The program will work ok (once you have
found the correct delay value), but not in all circumstances. If you place the robot onto a dif-
ferent surface (e.g. from a table-top to a carpet), then the spin will no longer be 180°.

There are many factors that will affect the actual turning speed of the robot - the friction of the
surface under the robot, the slope of the surface, the power of the batteries and variations in
the motors themselves are the principal factors. But how do we compensate for these differ-
ences? We will investigate this later.

HP794-60-3

PICmicro and PIC are trademarks of
Microchip Technology Inc.

 Page 5

Copyright © 2007
Matrix Multimedia Limited

Details correct at time of going to press. Matrix Multimedia reserves the right to change specification.

FORMULA
FLOWCODE

Program 2.3 - The power of macros

Up to now, we have been using “component macros” to our programs. These macros per-
form tasks that are called again and again throughout our programs. In addition to these pre-
made “component macros”, we can also build and use our own macros (simply called
“macros”). This is a very powerful feature of Flowcode and allows our programs to become
modular.

In the previous program, we worked out a time delay that allowed the robot to turn 180°. In
this program, we will use this to create a macro that makes the robot turn 90°. We will then
use this macro to recreate the 180° turn of the previous program.

First, open the previous program and then select “Save as” from the “File” menu. To create a
new macro, select “Macro...New…” from the menu. This will bring up a window where we
can type the name of the macro, a description, and some other information. For now, simply
type “Turn90” as the name and then click “OK”. We will now see a blank flowchart.

Add the “SpinLeft” icon and the delay icon to this new macro. Remember that the delay time
will be approximately half that of the delay used to turn 180°. Next, go back to the “Main”
flowchart (use the menu “Window...Main”).

In the main flowchart, delete the old “SpinLeft” icon and delay icons. In their place, add to
“Call macro” icons and in each, select the “Turn90” macro. Download this new program
to the robot and confirm that is works like the previous one.

Ex 2.3

Program 2.4 - Square dance

In level 1, we introduced the loop icon and how it is used to create an endless loop. In this
program, we will use the loop icon to perform some tasks a set number of times. The finished
program will make the robot drive in a square.

To drive in a square, the robot needs to follow this sequence: go forward, turn 90°, go for-
ward, turn 90°, go forward, turn 90°, go forward. Rather than writing these tasks one after
another, a better way would be to repeat the “go forward” and “turn 90°” tasks 4 times.

Create a new flowchart, add a “Loop” icon and double-click it to edit it. Instead of the default
“Loop while 1” condition, select “Loop count” and type 4 into the box. Add the icons to go
forwards (remember the delay) and turn 90° inside the 2 loop icons. And also add the “Stop”
icon at the end of the program (although this is not really necessary).

Ex 2.4

Turn90 macro

Summary

You should now know be able to:

• Use component macros to make the robot move.
• Create and use your own macros.
• Use loops to repeat a sequence of commands.

Further work

• Create programs to drive the robot in other shapes (e.g. triangle, hexagon, circle).
• Create other macros that may be useful (e.g. TurnLeft, TurnRight, Forwards10).
• Use “SetMotors” instead of “Forward” to compensate for motor differences.
• Create a basic obstacle course or maze for the robot and create a program to get

the robot from one side to the other without using the sensors (i.e. pre-program
the robot with the required route).

HP794-60-3

PICmicro and PIC are trademarks of
Microchip Technology Inc.

 Page 6

Copyright © 2007
Matrix Multimedia Limited

Details correct at time of going to press. Matrix Multimedia reserves the right to change specification.

FORMULA
FLOWCODE

Level 3 - Robopop
Make the robot dance and sing.

Concepts

• Basic inputs
• Variables
• Calculation icon

• Decision icon
• Microphone sensor
• Buzzer output

Program 3.1 - Show me your moves

Dance is basically a series of movements often (but not always) performed to a
piece of music. Creating a series of movements should be easy enough, but reacting
to sound is something new and we’ll cover this a bit later. So first, let’s create some
moves…

We don’t want the robot to travel too far, so we need to keep the dance moves
fairly short and to try to start and finish in the same place. To do this, use pairs of
Forward/Backward and SpinLeft/SpinRight macro calls (remember the short delay
after each). You could also add a few Stop calls within your dance moves. If these
moves within a macro, you can combine them to create a full dance routine. An
example (the Wiggle macro) is shown on the right.

Once you have a number of different moves, sequence them together by calling
them from the main flowchart.

Wiggle macro

Ex 3.2

Program 3.2 - Let you robot sing

The Formula Flowcode robot has an on-board buzzer which can create basic sounds by
using the PlayNote macro. This macro takes 2 parameters, “note” and “delay_ms”,
where “delay_ms” is the length to play the note (in milliseconds) and “note” is the pitch
of the note. The table on the right shows approximate values for some musical notes
and the program beyond it plays the first few notes of “twinkle, twinkle little star”.

To make things easier, we could use “variables” to hold the numbers. To create the
variables, select “Edit...Variables” from the menu. From the resulting window, select
“Add new” and enter the name as “C” and click “OK” (leave the variable type as
“byte”). Also add variables called “G” and “A”, then click “Close” to continue.

Once we have added these variables, we need to give them appropriate values
using a “Calculation” icon. Add this icon to the beginning of your program and
double-click it to edit it. Enter “C = 64”, “G = 127” and “A = 141” (without the
quotes) on separate lines and then click “OK”.

You can now use the variables “C”, “G” and “A” in place of the numbers in your musi-
cal programs - PlayNote(G, 400). You can also define other variables and set these ap-
propriate values.

Ex 3.1

note value

G 0
G# 14
A 28

A# 40
B 53
C 64

C# 75
D 85

D# 94
E 103
F 112

F# 120
G 127

G# 135
A 141

A# 148
B 154
C 159

C# 165
D 170

D# 175
E 179
F 183

HP794-60-3

PICmicro and PIC are trademarks of
Microchip Technology Inc.

 Page 7

Copyright © 2007
Matrix Multimedia Limited

Details correct at time of going to press. Matrix Multimedia reserves the right to change specification.

FORMULA
FLOWCODE

Summary

You should now know be able to:

• Create and use BYTE variables.
• Read sensor values.
• Use the decision icon with an appropriate condition to alter program flow.

Further work

• Make more dance moves.
• Play different melodies and make your own up.
• Make the robot stop dancing as soon as the music stops.
• Make the robot perform different dances depending on the loudness of the sound.
• Create a program that makes the robot move forward when you clap you hands.
• Create a “Theremin-like” instrument that plays a frequency dependant on the LDR light level.

Program 3.3 - Let the music begin

Ok, the robot can now dance and it can play music. Now, let’s make it dance to
some real music. For this, we need to use the microphone sensor and the ReadMic
macro. We will modify the earlier dance program so that the robot only dances
when it hears a sound.

By default, all sensor readings are “analogue” values and are read as “bytes” (i.e. a
value between 0 and 255). So first of all create a new “byte” variable called
“sound”. To read the microphone sensor value, use the “ReadMic” macro and set
the “return value” to the variable “sound”.

Now add a “Decision” icon. The robot should dance if the sound level is greater
than a certain value, so in the “if” box type “sound > 50”. If the sound level is
greater than 50, then we want the robot to dance. If not, it should stop dancing.
The “>“ symbol is used to mean “is greater than”. Similarly, “<“ means “is less than”
and “=“ means “is equal to”. In addition “>=“ and “<=“ mean “is greater than or
equal to” and “is less than or equal to”.

The completed program is shown on the right.

There are other sensors on the robot - an LDR (Light Dependant Resistor)
for detecting the light level and three IR (Infrared) sensors which are used to
detect how close walls and other objects are. These sensors can be used in exactly
the same way as the microphone sensor.

In addition to these analogue sensors, there are a 4 digital sensors - 2 switches and
2 line-followers. These can also be used like the microphone sensor, but the values
returned are either 1 or 0.

Ex 3.3

HP794-60-3

PICmicro and PIC are trademarks of
Microchip Technology Inc.

 Page 8

Copyright © 2007
Matrix Multimedia Limited

Details correct at time of going to press. Matrix Multimedia reserves the right to change specification.

FORMULA
FLOWCODE

Level 4 - Follow my line
Program the robot to follow a line on paper.

Concepts

• Line-follower sensors
• Comments in programs
• Feedback

• Closed-loop control

Program 4.1 - What lies beneath?

The line follower sensors are digital sensors, returning 1 when the sensor is over a
black surface and 0 when it is over white. The macro call that returns this sensor
value is “ReadLineSensor”. It takes a parameter which specifies either the left sen-
sor (0 or ‘L’) or the right sensor (1 or ‘R’).

The program on the right is a simple one which displays the state of both line-
follower sensors onto the LEDs. Download this program to the robot and place its
line-follower sensors over various surfaces and observe the resulting output on the
LEDs.

One new feature of this program is the inclusion of 2 comment icons. You
can add these to the program by dragging the “Comment icon” symbol onto
your flowchart. Comments like these are very important in programs and should
be used where appropriate, especially to describe a group of icons that together
form a distinct task. Note that icons can also have their own individual comment by
changing their “Display name” property.

In the “Decision” icons, the “if left < > 0” line means “if the variable ‘left’ does not
equal zero”.

Now we know how to read the line follower sensors, we can put them to use. A
common use of these sensors is to allow the robot to follow a line around a maze
or race track. You can make your own track by sticking black tape (or drawing
with a black marker pen) on a white background, or you can use the track that is on
the reverse of the Formula Flowcode user guide.

There are two ways to accomplish this task. One way is to make both of the ro-
bot’s line followers remain above the black line, although for this method, the line
needs to be fairly thick. Another method is to make sure one sensor is above the
black line and the other is off it. It does not matter which method you use, but in
the next program we will use the latter (with the right sensor above the line and
the left sensor below it).

Ex 4.1

HP794-60-3

PICmicro and PIC are trademarks of
Microchip Technology Inc.

 Page 9

Copyright © 2007
Matrix Multimedia Limited

Details correct at time of going to press. Matrix Multimedia reserves the right to change specification.

FORMULA
FLOWCODE

Ex 4.2

Program 4.2 - Start your engines...

Up to now, we have been using a method of control called
“open-loop control”. This does not work very well in prac-
tice because there is no feedback about the position of the
robot so it basically “guessed” which direction to drive in.
For this program, we will use feedback to create a “closed-
loop control” program.

The program, which is displayed on the right, is fairly
straight-forward. There is an endless loop with two parts
inside - the first part reads the values for each sensor and
the second part uses these values to decide which direction
to move the robot.

There are 2 variables to store the sensor values - “L_Line”
and “R_Line”, which are both read by the “ReadLineSensor”
macro.

We have decided to use the line-following method where
we retain the right sensor above the line and the left sensor
off it. So the first decision is easy - if the left sensor is on
the line, then spin to the left until the left sensor is not on
the line.

If the left sensor is not above the line, then we check the
right sensor. If it is on the line, then we are ok and should
continue forwards. If not, then spin right until it is above
the line.

Despite its simplicity, the program on the right works sur-
prisingly well. The robot’s movement is a sometimes a little
jerky, but it should be able to complete a lap of the track
within a few seconds.

Summary

You should now know be able to:

• Use comments in your programs to aid readability.
• Explain the differences between open-loop and closed-loop control.
• Use feedback in your programs to affect program flow.

Further work

• Create your own mazes using white card and blank sticky-tape.
• Modify or rewrite the program to improve your lap time.
• Race against your friends to see who has written the most efficient program.
• Add flashing lights (using the LEDs) or a siren (using the buzzer) to your program.

HP794-60-3

PICmicro and PIC are trademarks of
Microchip Technology Inc.

 Page 10

Copyright © 2007
Matrix Multimedia Limited

Details correct at time of going to press. Matrix Multimedia reserves the right to change specification.

FORMULA
FLOWCODE

Level 5 - I can see the light
Program the robot to follow the light source.

Concepts

• LDR sensor
• Feedback
• Closed-loop control

• Binary representation
• Hexadecimal representation
• The 8-bit microcontroller ‘brain’
• Conversion between decimal, binary and hex

Program 5.1 - Displaying the light

The Formula Flowcode robot has an on-board LDR (Light Dependant Resistor) which detects the
light level at the front of the robot. This sensor works in a similar way to the microphone sensor,
but there is a significant difference - if the light is bright, then the returned value is low. If the ro-
bot is in the dark, then the LDR sensor will return the maximum value (255).

As an example of this, the program on the right will display the value of the LDR on the LEDs. As
discussed previously, the sensor gives a value between 0 and 255. This program will display this
value on the LEDs as a pattern representing the binary equivalent of this value (a series of 1’s and
0’s). This is because microcontrollers (indeed, almost all computers) store numbers and perform
calculations in binary. This means that a basic understanding of binary can be very useful.

A more convenient way of representing numbers in microcontrollers is by using hexadecimal nota-
tion, i.e. “hex” or base-16. In this system, there are 16 digits used to represent numbers (0 to 9,
followed by A, B, C, D, E, F), and every combination of 4 binary bits can be represented as a single
hex digit, as shown in the table on the right. And 2 hex digits can represent 8 binary bits, i.e. any
number between 0 (00) and 255 (FF). In Flowcode, you can write a hex number by writing “0x”
before it - e.g. 0xFF. Similarly, binary numbers are written like this: 0b01010101 (= 0x55).

The heart (or is it the brain) of the robot is an 8-bit microcontroller, because numbers inside it are
stored (and calculations are performed) in groups of 8 bits. This is why we have sensor values up
to 255 - because 255 is 11111111 in binary (or 0xFF in hex).

Being able to convert between decimal, hex and binary numbers is useful skill when using micro-
controllers. One way is to write the appropriate power of two above each binary digit (called a
“bit”) - just like we can write the powers of ten above columns of decimal numbers. Here are
some examples:

Ex 5.1

Hex Bin Dec

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 11
C 1100 12
D 1101 13
E 1110 14
F 1111 15

2
7 = 128

2
6 = 64

2
5 = 32

2
4 = 16

2
3 = 8

2
2 = 4

2
1 = 2

2
0 = 1

7 6 5 4 3 2 1 0

= 0b00000111 = 0x07 = 4+2+1 = 7

= 0b10000010 = 0x82 = 128+2 = 130

= 0b11000011 = 0xC3 = 128+64+2+1 = 195

= 0b01110110 = 0x76 = 64+32+16+4+2 = 118

HP794-60-3

PICmicro and PIC are trademarks of
Microchip Technology Inc.

 Page 11

Copyright © 2007
Matrix Multimedia Limited

Details correct at time of going to press. Matrix Multimedia reserves the right to change specification.

FORMULA
FLOWCODE

Summary

You should now know be able to:

• Create quite complex programs to solve problems.
• Convert between binary, decimal and hexadecimal numbers.
• Use the LDR sensor.
• Use feedback from analogue sensors to affect program flow.

Further work

• Experiment with binary and hexadecimal values within Flowcode programs.
• Refine program 5.2 so it works better.
• Use different light sources with the program.
• Implement other programming strategies to accomplish a 180° turn.
• Investigate closed-loop control using other sensors.
• Create a program that makes the robot follow a moving light source.

Program 5.2 - Finding your way

In program 2.2, we created a program which turned the robot 180° using open-loop
control. This did not work very well because there was no feedback about the position
of the robot so it basically “guessed” when to stop turning. We will now implement the
same program using feedback.

The sensors available to us are switches, line sensors, microphone, LDR and IR sensors.
Ideally, we would want a compass sensor so the robot would know the direction it
faced (perhaps this would make a nice add-on project). Realistically, there are only 2
choices - use the line followers with markers on the ground or use the LDR and a torch
to direct the robot back to its starting point. We will use the latter method, where the
robot drives towards the light.

There are a number of approaches we can take for our program. One way involves
spinning around until the light level starts to decrease (and then spin back the other way
a little). The program needs to spin whilst constantly comparing the LDR sensor value
with its previous value. Once the light level reading has decreased, the program knows
the robot has spun past the brightest point. There are some important issues to con-
sider - the light levels in the dark part of the room will probably vary (due to reflections,
etc) and the light level may decrease before the brightest reading has been read. Also,
many light sources do not emit a constant brightness - in fact, they often flash too
quickly for our eyes to see, but fast enough for the LDR reading to be affected.

Another way would be to spin at least 360°, reading the LDR all the time and updating a
variable for the maximum brightness (i.e. the minimum value of the LDR). Once the
spin has completed, spin again until the robot points to the bright spot (i.e. when the
LDR is reading this minimum value). The flowchart on the right shows a macro that
implements this method.

Note the final loop condition - “While LDR > (min_LDR + 5)”. A 5 adds a “tolerance”
to the sensor reading and has been added to make sure the brightest point is definitely
found.

FindLight Macro

HP794-60-3

PICmicro and PIC are trademarks of
Microchip Technology Inc.

 Page 12

Copyright © 2007
Matrix Multimedia Limited

Details correct at time of going to press. Matrix Multimedia reserves the right to change specification.

FORMULA
FLOWCODE

Further work

Drag race
Time trial race along a straight line

Remember, you’ll need some form of feedback to
make sure the robot stays on the line. It is probably
best solved by using the line-follower sensors.

Lefty
Solve a maze by following the left hand wall

Use the IR sensors to guide the robot around a
walled maze by following the left-hand side.

Daytona 5
Race 5 times around an 8x8 maze

Create a track and compete with each other to see
who completes the race in the fastest time.

Pimp my ride
Create your own robot mechanics

Either create a shell for the robot, or design your
own chassis. Add extra electronics via the E-Block
port, I2C or UART connectors (e.g. add a display or
Bluetooth module, or design your own electronics).

Full maze
Move on to full maze solving problems

Following on from “Lefty”, but now with full maze-
solving capabilities. Again, use the IR sensors.

Under the hood
Program the robot directly using flowcharts or C

Talk to the microcontroller directly without using
the Formula Flowcode component. Read sensors
using the ADC module and drive the motors using
the PWM module. Either use flowcharts or C, or
even assembly language!

Summary
On completion of this course, you should be able to
use Flowcode to create fairly complex programs for
the Formula Flowcode robot using almost all of its
features.

Along the way, you should have gained a knowledge
of the following concepts:

• Modular programming using ‘macros’,

• Variables,

• Closed-loop control,

• Feedback,

• Analogue and digital values,

• Sensors,

• Motor control,

• Binary and hexadecimal numbers.

You will have used these outputs:

• LEDs,

• Motors,

• Buzzer.

And these inputs:

• Switches,

• An LDR sensor,

• A microphone input,

• Line follower inputs,

And hopefully, you’ve had some fun as well!

On the right are some ideas for further work.

